P1170 兔八哥与猎人(简单数论,GCD)

P1170 兔八哥与猎人

今天来看一道水题。

题目描述

兔八哥躲藏在树林旁边的果园里。果园有M × N棵树,组成一个M行N列的矩阵,水平或垂直相邻的两棵树的距离为1。兔八哥在一棵果树下。

猎人背着猎枪走进了果园,他爬上一棵果树,准备杀死兔八哥。

如果猎人与兔八哥之间没有其它的果树,猎人就可以看到兔八哥。

现己知猎人和兔八哥的位置,编写程序判断兔子所在的位置是否安全.

输入输出格式

输入格式:
第一行为n,表示有n(n ≤ 100,000)组数据,每组数据的第一行为两个正整数ax和ay,表示猎人的位置,第二行为两个正整数bx和by,表示兔八哥的位置(1 ≤ ax, ay, bx, by ≤ 100,000,000)。

输出格式:
共有n行,每行为“yes”或“no”表示兔八哥的位置是否安全。

输入输出样例

输入样例#1:
1
1 1
1 2
输出样例#1:
no

思路

这个题实质上是在求以兔子和猎人连线为斜边所构成的直角三角形中,斜边是否过格点的问题。
了解GCD的同学就知道,只需要确定二者横纵坐标差是否互质即可。
最后还要注意题干中问的是是否安全,而不是是否能看见,所以这一点判断的时候一定注意!

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int i,j,m,n;
int x1,x2,y1,y2;

int r()
{
    int aans=0,f=1;
    char ch=getchar();
    while(ch<'0'||ch>'9')
    {
        if(ch=='-')
            f=-1;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9')
    {
        aans*=10;
        aans+=ch-'0';
        ch=getchar();
    }
    return aans*f;
}

int gcd(int a,int b)
{
    return a==0?b:gcd(b % a, a);
}

int main()
{
    n=r();
    for(i=1;i<=n;i++)
    {
        x1=r(),y1=r(),x2=r(),y2=r();
        if(gcd(abs(x2-x1),abs(y2-y1))==1)
        printf("no\n");
        else
        printf("yes\n");
    }
    return 0;
}

这里写图片描述

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Stockholm_Sun/article/details/78223195
文章标签: gcd 安全
个人分类: 数论
想对作者说点什么? 我来说一句

串口猎人V31

2013年12月24日 2.76MB 下载

怪物猎人p3金手指代码

2013年05月18日 15KB 下载

怪物猎人2G金手指代码

2015年06月19日 1010B 下载

时空猎人钓鱼源码

2014年11月17日 2.51MB 下载

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭