传送门
JSOI2008 All Clear!
这个题简直了,我整个代码都是抄的,抄完还是一脸懵逼
我就tm没见过这么难的树形dp
一开始还以为水题,然后发现根本不知道怎么dp
题解还是直接抄hzwer的吧。。
设P[x],L[x],M[x],表示物品x的能量,购买上限与价格
L[x]=min(L[x],m/M[x])
高级装备的M和L随便dp一下
再用f[i][j][k]表示第i个物品,有j件用于上层的合成,花费金钱是k所能获得的最大力量
对于以x为根的子树,枚举合成 l 个 x 物品,然后再用其余的钱买一些 x 子树内的装备不用于合成
枚举合成物品数量 l ,用g[i][j]表示x的前i个儿子的子树,花费j的钱,所能获得的最大力量
g[tot][j]=max{g[tot-1][j-k]+f[e[i].to][l*e[i].v][k]}
//e[i].to是儿子结点,e[i].v是所需数量,就是从j中拿出k的钱在e[i].to的子树内购买
最后再枚举合成的 l 个 x 物品中有 j 个是直接用于增加力量,剩余用于合成的
f[x][j][k]=max{g[tot][k]+P[x]*(l-j)}
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#define ll long long
using namespace std;
inline int read(){
int x=0;char ch=' ';int f=1;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+(ch^48),ch=getchar();
return x*f;
}
const int N=55,M=2005,K=105;
struct edge{int to,next,l;}e[M];
int n,m,tot;
int head[N],f[N][K][M],g[N][M],h[N][M];
inline void addedge(int x,int y,int l){e[++tot].to=y;e[tot].next=head[x];head[x]=tot;e[tot].l=l;}
int v[N],cost[N],mx[N],in[N],out[N];
inline void dp(int x){
if(!out[x]){
mx[x]=min(mx[x],m/cost[x]);
for(int i=0;i<=mx[x];++i)
for(int j=i;j<=mx[x];++j)
f[x][i][j*cost[x]]=(j-i)*v[x];
return;
}
mx[x]=0x3f3f3f3f;
for(int i=head[x];i;i=e[i].next){
int u=e[i].to;
dp(u);
mx[x]=min(mx[x],mx[u]/e[i].l);
cost[x]+=cost[u]*e[i].l;
}
mx[x]=min(mx[x],m/cost[x]);
memset(g,-0x3f,sizeof(g));
g[0][0]=0;
for(int l=mx[x];l>=0;--l){
int tot=0;
for(int i=head[x];i;i=e[i].next){
tot++;
for(int j=0;j<=m;++j)
for(int k=0;k<=j;++k)
g[tot][j]=max(g[tot][j],g[tot-1][j-k]+f[e[i].to][l*e[i].l][k]);
}
for(int j=0;j<=l;++j)
for(int k=0;k<=m;++k)
f[x][j][k]=max(f[x][j][k],g[tot][k]+v[x]*(l-j));
}
}
int main(){
memset(f,-0x3f,sizeof(f));
n=read();m=read();
for(int i=1;i<=n;++i){
char ch[3];
v[i]=read();
scanf("%s",ch);
if(ch[0]=='A'){
int C=read();
out[i]=C;
while(C--){
int to=read(),num=read();
addedge(i,to,num);
in[to]++;
}
}
else cost[i]=read(),mx[i]=read();
}
int tot=0;
for(int x=1;x<=n;++x){
if(!in[x]){
tot++;
dp(x);
for(int i=0;i<=m;++i)
for(int j=0;j<=i;++j)
for(int k=0;k<=mx[x];++k)
h[tot][i]=max(h[tot][i],h[tot-1][j]+f[x][k][i-j]);
}
}
int ans=0;
for(int i=0;i<=m;++i)ans=max(ans,h[tot][i]);
printf("%d",ans);
return 0;
}