题目描述
给定一棵树,初始时非叶节点均为无色,叶节点会是红色、蓝色或无色。
小红和小蓝轮流给无色叶子染色(小红染红色,小蓝染蓝色,小红先染)。所有 叶子染完后,非叶节点的颜色将被逐一确定:一个非叶节点的颜色是它所有儿子的颜 色中出现较多的那个(保证有奇数个儿子)。最后,根是谁的颜色谁就获胜。
求小红是否能赢,若能赢,求出第一步选择哪些叶子能赢。
输入输出格式
输入格式:
第一行一个整数t表示数据组数。
每组数据第一行一个整数n表示节点数。
第二行n个整数,第i个整数fi表示i的父亲,保证f1=0。
第三行 n个整数,第 i 个整数 gi 表示 i 的初始颜色(0 表示红色,1表示蓝 色,-1表示无色)。
输出格式:
每组数据输出一行。
若小红能赢,先输出一个整数 m表示第一步可以选的叶子数,接下来 m个 整数表示那些叶子的编号,从小到大输出。
若你只知道小红能赢,你可以只输 出一行一个整数0。
否则输出一个整数-1。
输入输出样例
输入样例#1: 复制
2
2
0 1
-1 -1
2
0 1
-1 1
输出样例#1: 复制
1 2
-1
说明
对于20%的数据,t=1,n≤20。
对于60%的数据,n≤2000。
对于100%的数据,t<=10,n≤100000。
若你只判断对了胜负,可以获得该测试点一半的分数。
这个题还是挺有趣的。
首先经过一些思考,可以发现:
最优方案一定是一开始选择一个叶子染,并且使得它的父亲变成红色
那么我们可以发现,这样的点满足儿子中红色节点数量=蓝色节点数量
此时我们可以将它染成无色,恰好满足题目的意思(通过一步改变它的颜色)
类似的可以染出红色和蓝色,分别代表双方必胜的情况
先手必胜当且仅当根节点的颜色为红色或无色
根节点为红色时,可以随便选一个叶子,都是符合要求的
根节点为无色时,分两种情况:
1.我们可以选择一个无色儿子染
2.我们可以选择一个蓝色儿子染(必须保证不是叶子,且可以通过一步将它染成无色)
然后就统计出来所有点了,最后排序输出即可。
代码:
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define max(a,b) a>b?a:b
#define min(a,b) a<b?a:b
using namespace std;
inline int read(){
int x=0,f=1;char ch=' ';
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+(ch^48),ch=getchar();
return x*f;
}
const int N=1e5+5;
int T,n,tot,cnt;
int head[N],to[N],Next[N];
int col[N],leaf[N],q[N],num[N];
inline void addedge(int x,int y){to[++tot]=y;Next[tot]=head[x];head[x]=tot;}
inline void dfs(int x){
if(leaf[x])return;
int cntr=0,cntb=0;
for(int i=head[x];i;i=Next[i]){
int u=to[i];
dfs(u);
if(col[u]==0)cntr++;
else if(col[u]==1)cntb++;
}
num[x]=cntr-cntb;
if(num[x]>0)col[x]=0;
else if(!num[x])col[x]=-1;
else col[x]=1;
}
inline void dfs2(int x){
if(leaf[x]){
if(col[x]==-1)q[++cnt]=x;
return;
}
for(int i=head[x];i;i=Next[i]){
int u=to[i];
if(col[u]==-1)dfs2(u);
else if(col[u]==1&&num[u]==-1)dfs2(u);
else if(leaf[u])dfs2(u);
}
}
int main(){
// freopen("./1-1 T2 data/rab3.in","r",stdin);
// freopen("rab3.out","w",stdout);
T=read();
while(T--){
n=read();tot=0;
for(int i=1;i<=n;i++)head[i]=0,leaf[i]=1;
for(int i=1;i<=n;i++){
int fa=read();
if(fa)addedge(fa,i);
leaf[fa]=0;
}
for(int i=1;i<=n;i++)col[i]=read();
dfs(1);
if(col[1]==0){
cnt=0;
for(int i=1;i<=n;i++)if(leaf[i]&&col[i]==-1)cnt++;
printf("%d ",cnt);
for(int i=1;i<=n;i++)if(leaf[i]&&col[i]==-1)printf("%d ",i);
putchar('\n');
}
else if(col[1]==-1){
cnt=0;
dfs2(1);
printf("%d ",cnt);
sort(q+1,q+cnt+1);
for(int i=1;i<=cnt;i++)printf("%d ",q[i]);
putchar('\n');
}
else printf("-1\n");
}
return 0;
}