pyDMS一种热红外的超分辨率方法-源码解读与疑难点记录

9 篇文章 1 订阅
6 篇文章 0 订阅

前言

pyDMS是利用决策树方法将低分辨率影像升采样为高分辨率影像的python package。由Radoslaw Guzinski and contributors在2019年编写。原算法为2012 Gao Feng在Remote sensing上的文章。
本文目的:做项目时查到了这个包,有很多文献都使用了该方法,但无奈本人英语奇懒,原文算法看了三遍仍有很多细节不清楚,因此翻出源码并结合文章来一点一点扣细节,对疑惑和认为重要的点进行记录。如有勘误和表述不恰之处,欢迎指正。
原文链接:

[Gao2012] Gao, F., Kustas, W. P., & Anderson, M. C. (2012). A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land. Remote Sensing, 4(11), 3287–3319. https://doi.org/10.3390/rs4113287
[Guzinski2019] Guzinski, R., & Nieto, H. (2019). Evaluating the feasibility of using Sentinel-2 and Sentinel-3 satellites for high-resolution evapotranspiration estimations. Remote Sensing of Environment, 221, 157–172. https://doi.org/10.1016/j.rse.2018.11.019

项目源码链接:pyDMS

要点1:

文章提到TsHARP有个前提,假设T-NDVI(热红外与NDVI的关系)在不同空间分辨率下是恒定的,因此低分辨的也可以用于高分辨图像;
反射率的聚合(应该是降采样,原文是aggregation)是线性的,但温度的聚合不是线性的(参考斯忒藩-玻尔兹曼定律,辐射出射度与温度的四次方成正比),因此混合像元的T-R(热红外与反射率)与T-NDVI可能随着空间分辨率变化。当然,均质像元的T-R关系是可以迁用的。因此引出一个问题——怎么确定均质像元呢?
文中提出了变异系数(Kustas et al.)。文中给出寻找的均质像元样本定义如下:如果在高分辨率上反射率相似(similar),则在低分辨率上这个差异是趋于0的,这类像元定义为“均质像元”(homogeneous pixels)。
变异系数计算如下:
在这里插入图片描述
这个公式是我认为是有误解的(最起码我第一次读的时候是懵逼的),准确来说,这里的 σ 和 μ \sigma和\mu σμ是以低分辨率像元大小为窗口,求取对应范围内高分辨率像元的均值和方差。
低分辨率由多少行列,就有多少个 σ 和 μ \sigma和\mu σμ。高分辨率有多少个波段,就有几层的 σ 和 μ \sigma和\mu σμ,然后对每个像元求变异系数Cv
该部分源码如下:

def _resampleHighResToLowRes(bandData_HR, ySize_LR, yRes_LR, yRes_HR, xSize_LR, xRes_LR, xRes_HR,
                             gt_HR, gt_LR):
    aggregatedMean = np.zeros((ySize_LR, xSize_LR))
    aggregatedStd = np.zeros((ySize_LR, xSize_LR))
    for yPix_LR in range(ySize_LR):
        yPos_LR_min = gt_LR[3] + yPix_LR*yRes_LR
        yPix_HR_min = int(round(max(0, gt_HR[3] - yPos_LR_min) / yRes_HR))
        yPix_HR_max = int(round(max(0, gt_HR[3] - (yPos_LR_min + yRes_LR)) / yRes_HR))
        for xPix_LR in range(xSize_LR):
            xPos_LR_min = gt_LR[0] + xPix_LR*xRes_LR
            xPix_HR_min = int(round(max(0, xPos_LR_min - gt_HR[0]) / xRes_HR))
            xPix_HR_max = int(round(max(0, xPos_LR_min + xRes_LR - gt_HR[0]) / xRes_HR))
            aggregatedMean[yPix_LR, xPix_LR] =\
                np.nanmean(bandData_HR[yPix_HR_min:yPix_HR_max, xPix_HR_min:xPix_HR_max])
            aggregatedStd[yPix_LR, xPix_LR] =\
                np.nanstd(bandData_HR[yPix_HR_min:yPix_HR_max, xPix_HR_min:xPix_HR_max])

    return aggregatedMean, aggregatedStd
-------------------------------------------------------------------------------------------
resMean, resStd = utils.resampleHighResToLowRes(scene_HR, subsetScene_LR)
resMean[resMean == 0] = 0.000001
resCV = np.sum(resStd/resMean, 2) / resMean.shape[2]
resCV[np.isnan(resCV)] = 1000

要点2:

全局模型与局部模型结合的结果输出。
文中用了两种策略来保障输出结果:

  • 第一种是扩大采样窗口,实际扩大一倍的采样数量,从而保证相邻移动窗口共享部分样本。
    目的是为了消除边界效应。局部模型对局部的效果更好,但容易造成边界效应(窗口与窗口之间存在分割线),如下图所示。
    在这里插入图片描述
  • 第二种是使用全局和局部的加权结果作为最终输出。
    每次运行时,会在缓存中保留局部和全局的结果,然后分别计算每个像元的局部和全局结果的残差(计算流程和源码见下)及权重,对残差结果进行高斯滤波(目的也是为了消除边界效应);最后的输出结果是逐像元的全局与局部的加权平均和。
    源码如下:
# windowed weight
 ww = (1/windowedResidual)**2/((1/windowedResidual)**2 + (1/fullResidual)**2)
 # full weight
 fw = 1 - ww
 outData = outWindowData*ww + outFullData*fw

残差计算:
首先提取高分辨率与低分辨率重叠区域,然后判断低分辨率是否存在QA数据,如果存在将非good pixls设为nan值。
然后判断是否为温度数据,如果是需要转为辐亮度数据(因为辐射出射度与温度的四次方成正比,所以温度的降采样不是线性关系)源码是直接四次幂。
最后对锐化的高分辨率图像进行均值降采样,并用低分辨率影像减去高分辨率影像。

 # Then resample high res scene to low res pixel size
        if self.disaggregatingTemperature:
            # When working with tempratures they should be converted to
            # radiance values before aggregating to be physically accurate.
            radianceScene = utils.saveImg(downscaledScene.GetRasterBand(1).ReadAsArray()**4,  # 注意这里,四次幂
                                          downscaledScene.GetGeoTransform(),
                                          downscaledScene.GetProjection(),
                                          "MEM",
                                          noDataValue=np.nan)
            resMean, _ = utils.resampleHighResToLowRes(radianceScene,
                                                       subsetScene_LR)
            # Find the residual (difference) between the two)
            residual_LR = data_LR**4 - resMean[:, :, 0]  # 还有这里,都是四次幂
        else:
            resMean, _ = utils.resampleHighResToLowRes(downscaledScene,
                                                       subsetScene_LR)
            # Find the residual (difference) between the two
            residual_LR = data_LR - resMean[:, :, 0]
        # Smooth the residual and resample to high resolution
        residual = utils.binomialSmoother(residual_LR)  # 高斯滤波

权重计算公式如下:
c表示这个数据来自低分辨率影像,i应该是1或者2,代表某一像元的残差数量(局部或全局),r代表残差,w为某一像元在局部模型或全局模型下的权重。
在这里插入图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值