根据国务院下发的《新一代人工智能发展规划》提出面向2030年我国新一代人工智能发展的指导思想、战略目标、重点任务和保障措施,在2030年中国人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心。
现在的人工智能不仅能够通过人脸部的个体差异进行身份识别,更能够根据你脸部表情、肤色、声音特性以及形体特征识别你的性别、年龄以及种族。
而这一切都是基于机器学习技术通过分析人体特征学特征而作出的识别。人类可以在瞬间判断出对方是男是女、高矮胖瘦、种族肤色,而机器要做到这一点不容易。生物学特征的分析,将人体特征判断标准量化并形成判断逻辑,智能机器通过学习便可逐步做到。
生物学特征可细分为主特征学特征和软生物学特征。
主特征学特征包括人脸、指纹、虹膜等传统的识别特征。
软生物学特征则包括人的皮肤、头发、眼睛、身高、手臂长度、体重、伤疤、行为等。软生物学特征由于缺少足够的判别力,目前只能用于辅助识别。
从人体测量学的角度看,一般女性的身高较矮于男性;当身高归一化时,男性相比女性手臂和腿则较短,而躯干和头占的比例较大,肩较窄;由于女性上力量弱于男性,帮女性的上肢功能尺寸小于男性;男性从上到下一般呈倒三角形中,而女性则呈S曲线型。
表1
从生物力学的角度来看,人的运动是人身体上各肌肉和关节的综合运动,受性别影响较为明显。不同性别,肌肉运动幅度和时序都会有差异。这些差异是肌肉(包括胸、颈、背、肩、臂等)骨架和大脑规划的函数。例如挥手,男性的挥手幅度一般较大于女性。
种种这些都可做为人工智能性别识别的依据。目前判断准确性已经可以达到80%以上。相信在不久的将来,人工智能在各个领域能够发挥更大的作用,并根据对象个体特征提供更加贴心的服务。