题目
标题和出处
标题:高度检查器
出处:1051. 高度检查器
难度
2 级
题目描述
要求
学校打算为全体学生拍一张年度纪念照。根据要求,学生需要按照非递减的高度顺序排成一行。排序后的高度情况用整数数组 expected \texttt{expected} expected 表示,其中 expected[i] \texttt{expected[i]} expected[i] 是排在这一行中第 i \texttt{i} i 位的学生的预期高度(下标从 0 \texttt{0} 0 开始)。
给定整数数组 heights \texttt{heights} heights,表示学生站位的当前顺序,其中 heights[i] \texttt{heights[i]} heights[i] 是这一行中第 i \texttt{i} i 位学生的高度(下标从 0 \texttt{0} 0 开始)。
返回满足 heights[i] ≠ expected[i] \texttt{heights[i]} \ne \texttt{expected[i]} heights[i]=expected[i] 的下标数量。
示例
示例 1:
输入:
heights
=
[1,1,4,2,1,3]
\texttt{heights = [1,1,4,2,1,3]}
heights = [1,1,4,2,1,3]
输出:
3
\texttt{3}
3
解释:
高度:
[1,1,4,2,1,3]
\texttt{[1,1,4,2,1,3]}
[1,1,4,2,1,3]
预期:
[1,1,1,2,3,4]
\texttt{[1,1,1,2,3,4]}
[1,1,1,2,3,4]
下标
2
\texttt{2}
2、
4
\texttt{4}
4、
5
\texttt{5}
5 处的学生高度不匹配。
示例 2:
输入:
heights
=
[5,1,2,3,4]
\texttt{heights = [5,1,2,3,4]}
heights = [5,1,2,3,4]
输出:
5
\texttt{5}
5
解释:
高度:
[5,1,2,3,4]
\texttt{[5,1,2,3,4]}
[5,1,2,3,4]
预期:
[1,2,3,4,5]
\texttt{[1,2,3,4,5]}
[1,2,3,4,5]
所有下标的对应学生高度都不匹配。
示例 3:
输入:
heights
=
[1,2,3,4,5]
\texttt{heights = [1,2,3,4,5]}
heights = [1,2,3,4,5]
输出:
0
\texttt{0}
0
解释:
高度:
[1,2,3,4,5]
\texttt{[1,2,3,4,5]}
[1,2,3,4,5]
预期:
[1,2,3,4,5]
\texttt{[1,2,3,4,5]}
[1,2,3,4,5]
所有下标的对应学生高度都匹配。
数据范围
- 1 ≤ heights.length ≤ 100 \texttt{1} \le \texttt{heights.length} \le \texttt{100} 1≤heights.length≤100
- 1 ≤ heights[i] ≤ 100 \texttt{1} \le \texttt{heights[i]} \le \texttt{100} 1≤heights[i]≤100
解法一
思路和算法
由于要求拍照时学生按照非递减的高度顺序排列,排序后的高度情况是整数数组 expected \textit{expected} expected,因此数组 expected \textit{expected} expected 为数组 heights \textit{heights} heights 升序排序之后的结果。
为了得到数组 expected \textit{expected} expected,需要创建与数组 heights \textit{heights} heights 相同长度的数组 expected \textit{expected} expected,将数组 heights \textit{heights} heights 中的元素复制到数组 expected \textit{expected} expected 中,然后对数组 expected \textit{expected} expected 升序排序,即可得到排序后的数组 expected \textit{expected} expected。
对数组 expected \textit{expected} expected 排序之后,同时遍历数组 heights \textit{heights} heights 和数组 expected \textit{expected} expected,统计对应元素不相等的下标数量。
代码
class Solution {
public int heightChecker(int[] heights) {
int length = heights.length;
int[] expected = new int[length];
System.arraycopy(heights, 0, expected, 0, length);
Arrays.sort(expected);
int diff = 0;
for (int i = 0; i < length; i++) {
if (heights[i] != expected[i]) {
diff++;
}
}
return diff;
}
}
复杂度分析
-
时间复杂度: O ( n log n ) O(n \log n) O(nlogn),其中 n n n 是数组 heights \textit{heights} heights 的长度。需要 O ( n ) O(n) O(n) 的时间将数组 heights \textit{heights} heights 中的元素复制到数组 expected \textit{expected} expected 中,对数组 expected \textit{expected} expected 排序需要 O ( n log n ) O(n \log n) O(nlogn) 的时间,遍历两个数组统计对应元素不相等的下标数量需要 O ( n ) O(n) O(n) 的时间,总时间复杂度是 O ( n log n ) O(n \log n) O(nlogn)。
-
空间复杂度: O ( n ) O(n) O(n),其中 n n n 是数组 heights \textit{heights} heights 的长度。需要创建长度为 n n n 的数组 expected \textit{expected} expected,对数组 expected \textit{expected} expected 排序需要 O ( log n ) O(\log n) O(logn) 的递归调用栈空间,空间复杂度是 O ( n ) O(n) O(n)。
解法二
思路和算法
解法一需要 O ( n log n ) O(n \log n) O(nlogn) 的时间复杂度。如果使用计数代替排序,则可以降低时间复杂度。
首先得到学生高度的最大值,然后对每个高度计数。得到计数之后,按照升序顺序同时遍历每个高度和数组 heights \textit{heights} heights。假设数组 heights \textit{heights} heights 有序,高度 height \textit{height} height 的计数为 count \textit{count} count,则遍历数组 heights \textit{heights} heights 中的 count \textit{count} count 个元素,这些元素都等于 height \textit{height} height,如果这 count \textit{count} count 个元素中存在不等于 height \textit{height} height 的元素,则每个不等于 height \textit{height} height 的元素表示一个高度不匹配的位置。
以示例 1 为例。高度数组 heights = [ 1 , 1 , 4 , 2 , 1 , 3 ] \textit{heights} = [1, 1, 4, 2, 1, 3] heights=[1,1,4,2,1,3],计数数组 counts = [ 0 , 3 , 1 , 1 , 1 ] \textit{counts} = [0, 3, 1, 1, 1] counts=[0,3,1,1,1](计数数组的下标从 0 0 0 开始)。同时遍历计数数组 counts \textit{counts} counts 和高度数组 heights \textit{heights} heights:
-
高度 height = 1 \textit{height} = 1 height=1, counts [ 1 ] = 3 \textit{counts}[1] = 3 counts[1]=3,遍历 heights \textit{heights} heights 的 3 3 3 个元素 1 , 1 , 4 1, 1, 4 1,1,4,有 1 1 1 个元素不等于 1 1 1,计数加 1 1 1;
-
高度 height = 2 \textit{height} = 2 height=2, counts [ 2 ] = 1 \textit{counts}[2] = 1 counts[2]=1,遍历 heights \textit{heights} heights 的 1 1 1 个元素 2 2 2,计数不变;
-
高度 height = 3 \textit{height} = 3 height=3, counts [ 3 ] = 1 \textit{counts}[3] = 1 counts[3]=1,遍历 heights \textit{heights} heights 的 1 1 1 个元素 1 1 1,有 1 1 1 个元素不等于 3 3 3,计数加 1 1 1;
-
高度 height = 4 \textit{height} = 4 height=4, counts [ 4 ] = 1 \textit{counts}[4] = 1 counts[4]=1,遍历 heights \textit{heights} heights 的 1 1 1 个元素 3 3 3,有 1 1 1 个元素不等于 4 4 4,计数加 1 1 1。
遍历结束之后得到计数 3 3 3 即为答案。
代码
class Solution {
public int heightChecker(int[] heights) {
int maxHeight = 0;
for (int height : heights) {
maxHeight = Math.max(maxHeight, height);
}
int[] counts = new int[maxHeight + 1];
for (int height : heights) {
counts[height]++;
}
int diff = 0;
for (int height = 1, index = 0; height <= maxHeight; height++) {
int count = counts[height];
for (int i = 1; i <= count; i++) {
if (heights[index] != height) {
diff++;
}
index++;
}
}
return diff;
}
}
复杂度分析
-
时间复杂度: O ( n + m ) O(n + m) O(n+m),其中 n n n 是数组 heights \textit{heights} heights 的长度, m m m 是数组 heights \textit{heights} heights 的最大值。需要 O ( n ) O(n) O(n) 的时间得到数组 heights \textit{heights} heights 的最大值并对每个高度计数,需要 O ( n + m ) O(n + m) O(n+m) 的时间统计高度不匹配的下标数量,总时间复杂度是 O ( n + m ) O(n + m) O(n+m)。
-
空间复杂度: O ( m ) O(m) O(m),其中 m m m 是数组 heights \textit{heights} heights 的最大值。计数需要 O ( m ) O(m) O(m) 的空间。