基本概念
开闭原则:
对功能的扩展(开放)
对代码的修改(关闭)
def wrapper(fn):
def inner():
print("浇水") # 增加一个新功能
fn()
return inner
def zaoren():
print("捏个泥人")
print('吹口仙气')
print('造成了!')
zaoren = wrapper(zaoren) # 将原函数名传入,闭包操作后,还返回原函数名
# 原来的调用者执行
zaoren() # 用了装饰器后,增添了新功能
zaoren()
有参数的装饰器
def play(username,password/*args, **kwargs):
print("开始打游戏",username,password/*args,**kwargs)
def wrapper(fn):
def inner(*args, **kwargs):
print("开挂")
fn(*args, **kwargs) #paly()
print("关闭外挂")
return inner
play = wrapper(play) #返回值paly 是inner
play("min","123")
#此时 原函数返回值 没忽视了
通用装饰器
def play(*args, **kwargs):
print("开始打游戏",*args,**kwargs)
return 123
def wrapper(fn):
def inner(*args, **kwargs):
print("开挂")
ret=fn(*args, **kwargs)
print("关闭外挂")
return ret
return inner
@wrapper #这个和自定义装饰器函数名一样,且如果要用,必须在它下面
def zaoren():
print("捏个泥人")
print('吹口仙气')
print('造成了!')
play = wrapper(play) #左边的paly 是函数名inner
print(play("min","123"))
zaoren=wrapper(zaoren)#加了@wrapper 就可以省略这句声明
zaoren()
通用装饰器写法:
# python里的动态代理
# 带有参数的装饰器:控制装饰器起不起作用
>>>应有示例:把游戏外挂关了
def wrapper_out(flag):
def wrapper(fn):
def inner(*args, **kwargs):
if flag == True:
print("开挂")
ret = fn(*args, **kwargs)
print("关闭外挂")
return ret
else:
ret = fn(*args, **kwargs)
return ret
return inner
return wrapper # 这个是返回给外层装饰器的 然后和前面的@又构成了一个装饰器
ask = input("是否需要开外挂:")
@wrapper_out(False/ask)
def play(*args, **kwargs): # 此时这个装饰器最终还是被 wrapper装饰着
print("开始打游戏", *args, **kwargs)
return 123
同一个函数被多个装饰器装饰
# 就近原则,离函数最近的最先被装饰,其他则在外围
# 输出结果:
我是第二层
我是第一层
我是第0层
开始装饰
iam runnig
结束装饰
第0层结束
第一层结束
第二层结束
深入理解装饰器
- 引入
#### 第一波 ####
def foo():
print('foo')
foo # 表示是函数
foo() # 表示执行foo函数
#### 第二波 ####
def foo():
print('foo')
foo = lambda x: x + 1
foo() # 执行lambda表达式,而不再是原来的foo函数,因为foo这个名字被重新指向了另外一个匿名函数
# 函数名仅仅是个变量,只不过指向了定义的函数而已,所以才能通过函数名()调用,
# --如果函数名=xxx被修改了,那么当在执行函数名()时,调用的就不知之前的那个函数了
- 需求
(1)初创公司有N个业务部门,基础平台部门负责提供底层的功能,如:数据库操作、redis调用、监控API等功能。业务部门使用基础功能时,只需调用基础平台提供的功能即可。如下:
############### 基础平台提供的功能如下 ###############
def f1():
print('f1')
def f2():
print('f2')
def f3():
print('f3')
def f4():
print('f4')
############### 业务部门A 调用基础平台提供的功能 ###############
f1()
f2()
f3()
f4()
############### 业务部门B 调用基础平台提供的功能 ###############
f1()
f2()
f3()
f4()
(2)目前公司有条不紊的进行着,但是,以前基础平台的开发人员在写代码时候没有关注验证相关的问题,即:基础平台的提供的功能可以被任何人使用。现在需要对基础平台的所有功能进行重构,为平台提供的所有功能添加验证机制,即:执行功能前,先进行验证。
# 错误做法
############### 基础平台提供的功能如下 ###############
def f1():
# 验证1
# 验证2
# 验证3
print('f1')
def f2():
# 验证1
# 验证2
# 验证3
print('f2')
def f3():
# 验证1
# 验证2
# 验证3
print('f3')
def f4():
# 验证1
# 验证2
# 验证3
print('f4')
############### 业务部门不变 ###############
### 业务部门A 调用基础平台提供的功能###
f1()
f2()
f3()
f4()
### 业务部门B 调用基础平台提供的功能 ###
f1()
f2()
f3()
f4()
# 错误做法
############### 基础平台提供的功能如下 ###############
def check_login():
# 验证1
# 验证2
# 验证3
pass
def f1():
check_login()
print('f1')
def f2():
check_login()
print('f2')
def f3():
check_login()
print('f3')
def f4():
check_login()
print('f4')
(3)写代码要遵循开放封闭原则,虽然在这个原则是用的面向对象开发,但是也适用于函数式编程,简单来说,它规定已经实现的功能代码不允许被修改,但可以被扩展,即:
封闭:已实现的功能代码块
开放:对扩展开发
如果将开放封闭原则应用在上述需求中,那么就不允许在函数f1 、f2、f3、f4的内部进行修改代码
def w1(func):
def inner():
# 验证1
# 验证2
# 验证3
func()
return inner
@w1
def f1():
print('f1')
@w1
def f2():
print('f2')
@w1
def f3():
print('f3')
@w1
def f4():
print('f4')
# 对于上述代码,也是仅仅对基础平台的代码进行修改,就可以实现在其他人调用函数f1 f2 f3 f4
# --之前都进行【验证】操作,并且其他业务部门无需做任何操作。
(4)实现原理
# 单独以f1为例:
def w1(func):
def inner():
# 验证1
# 验证2
# 验证3
func()
return inner
@w1
def f1():
print('f1')
python解释器就会从上到下解释代码,步骤如下:
def w1(func): ==>将w1函数加载到内存
@w1
没错, 从表面上看解释器仅仅会解释这两句代码,因为函数在没有被调用之前其内部代码不会被执行。
从表面上看解释器着实会执行这两句,但是@w1 这一句代码里却有大文章, @函数名是python的一种语法糖。
- 上例@w1内部会执行一下操作
(1)执行w1函数
# 执行w1函数,并将@w1下面的函数作为w1函数的参数,即:@w1等价于w1(f1) 所以,内部就会去执行:
def inner():
#验证 1
#验证 2
#验证 3
f1() # func是参数,此时 func 等于 f1
return inner # 返回的 inner,inner代表的是函数,非执行函数 ,其实就是将原来的 f1 函数塞进另外一个函数中
(2)w1的返回值
# 将执行完的w1函数返回值赋值给@w1下面的函数的函数名f1 即将w1的返回值再重新赋值给f1,即:
新f1 = def inner():
#验证 1
#验证 2
#验证 3
原来f1()
return inner
# 所以,以后业务部门想要执行f1 函数时,就会执行新f1 函数,在新f1 函数内部先执行验证,再执行原来的f1函数,然后将原来f1 函数的返回值返回给了业务调用者。
# 如此一来, 即执行了验证的功能,又执行了原来f1函数的内容,并将原f1函数返回值返回给业务调用着
- 再议装饰器
# 定义函数:完成包裹数据
def makeBold(fn):
def wrapped():
return "<b>" + fn() + "</b>"
return wrapped
# 定义函数:完成包裹数据
def makeItalic(fn):
def wrapped():
return "<i>" + fn() + "</i>"
return wrapped
@makeBold
def test1():
return "hello world-1"
@makeItalic
def test2():
return "hello world-2"
@makeBold
@makeItalic
def test3():
return "hello world-3"
print(test1())
print(test2())
print(test3())
# 执行结果
<b>hello world-1</b>
<i>hello world-2</i>
<b><i>hello world-3</i></b>
- 装饰器(decorator)功能
引入日志
函数执行时间统计
执行函数前预备处理
执行函数后清理功能
权限校验等场景
缓存
- 装饰器示例
(1)无参数的函数
from time import ctime, sleep
def timefun(func):
def wrapped_func():
print("%s called at %s" % (func.__name__, ctime()))
func()
return wrapped_func
@timefun
def foo():
print("I am foo")
foo()
sleep(2)
foo()
上面代码理解装饰器执行行为可理解成
foo = timefun(foo)
# foo先作为参数赋值给func后,foo接收指向timefun返回的wrapped_func
foo()
# 调用foo(),即等价调用wrapped_func()
# 内部函数wrapped_func被引用,所以外部函数的func变量(自由变量)并没有释放
# func里保存的是原foo函数对象
- 装饰的函数有参数
from time import ctime, sleep
def timefun(func):
def wrapped_func(a, b):
print("%s called at %s" % (func.__name__, ctime()))
print(a, b)
func(a, b)
return wrapped_func
@timefun
def foo(a, b):
print(a+b)
foo(3,5)
sleep(2)
foo(2,4)
- 被装饰的函数有不定长参数
from time import ctime, sleep
def timefun(func):
def wrapped_func(*args, **kwargs):
print("%s called at %s"%(func.__name__, ctime()))
func(*args, **kwargs)
return wrapped_func
@timefun
def foo(a, b, c):
print(a+b+c)
foo(3,5,7)
sleep(2)
foo(2,4,9)
- 装饰器中含有return
from time import ctime, sleep
def timefun(func):
def wrapped_func():
print("%s called at %s" % (func.__name__, ctime()))
func()
return wrapped_func
@timefun
def foo():
print("I am foo")
@timefun
def getInfo():
return '----hahah---'
foo()
sleep(2)
foo()
print(getInfo())
# 执行结果
foo called at Fri Nov 4 21:55:35 2016
I am foo
foo called at Fri Nov 4 21:55:37 2016
I am foo
getInfo called at Fri Nov 4 21:55:37 2016
None
# 一般情况下为了让装饰器更通用,可以有return
- 装饰器带参数,在原有装饰器的基础上,设置外部变量
#decorator2.py
from time import ctime, sleep
def timefun_arg(pre="hello"):
def timefun(func):
def wrapped_func():
print("%s called at %s %s" % (func.__name__, ctime(), pre))
return func()
return wrapped_func
return timefun
# 下面的装饰过程
# 1. 调用timefun_arg("itcast")
# 2. 将步骤1得到的返回值,即time_fun返回, 然后time_fun(foo)
# 3. 将time_fun(foo)的结果返回,即wrapped_func
# 4. 让foo = wrapped_fun,即foo现在指向wrapped_func
@timefun_arg("itcast")
def foo():
print("I am foo")
@timefun_arg("python")
def too():
print("I am too")
foo()
sleep(2)
foo()
too()
sleep(2)
too()
可以理解为:
foo()==timefun_arg("itcast")(foo)()
- 类装饰器(扩展,非重点)
装饰器函数其实是这样一个接口约束,它必须接受一个callable对象作为参数,然后返回一个callable对象。在Python中一般callable对象都是函数,但也有例外。只要某个对象重写了__call__()方法,那么这个对象就是callable的。
class Test():
def __call__(self):
print('call me!')
t = Test()
t() # call me
类装饰器
class Test(object):
def __init__(self, func):
print("---初始化---")
print("func name is %s"%func.__name__)
self.__func = func
def __call__(self):
print("---装饰器中的功能---")
self.__func()
#说明:
#1. 当用Test来装作装饰器对test函数进行装饰的时候,首先会创建Test的实例对象
# 并且会把test这个函数名当做参数传递到__init__方法中
# 即在__init__方法中的属性__func指向了test指向的函数
#
#2. test指向了用Test创建出来的实例对象
#
#3. 当在使用test()进行调用时,就相当于让这个对象(),因此会调用这个对象的__call__方法
#
#4. 为了能够在__call__方法中调用原来test指向的函数体,所以在__init__方法中就需要一个实例属性来保存这个函数体的引用
# 所以才有了self.__func = func这句代码,从而在调用__call__方法中能够调用到test之前的函数体
@Test
def test():
print("----test---")
test()
showpy()#如果把这句话注释,重新运行程序,依然会看到"--初始化--"
运行结果如下:
---初始化---
func name is test
---装饰器中的功能---
----test---
装饰器的应用
# 用于校验,如登录状态
【装饰器用于普通函数】
function_list = ['login', 'watch_all', 'order']
flag = False
def login_verify(fn): # 登录验证装饰器
global flag
def inner(*args, **kwargs):
while 1:
if flag == True:
ret = fn(*args, **kwargs)
return ret
else:
print("请先登录")
login()
return inner
def login():
while 1:
global flag
print("欢迎登陆!")
user_name = input("请输入用户名:")
pass_word = input("请输入密码:")
if user_name == "min" and pass_word == "123":
flag = True
print('登陆成功!欢迎使用')
return
else:
print('登陆失败')
@login_verify
def watch_all():
print('查看')
@login_verify
def order():
print('订单')
if __name__ == '__main__':
while True:
for i in range(len(function_list)):
print(i + 1, function_list[i])
num = int(input("请输入你要选择的功能序号:"))
if num == 1:
login()
elif num == 2:
watch_all()
elif num == 3:
order()
else:
print("请输入正确的数字!")