并查集的简介及其C/C++代码的实现(某公司招聘笔试试题)

       当年, 我在一个公司实习, 某次, 在一次算法交流的过程中, 我第一次听到了并查集这个看似高大上的概念, 也再一次感觉到了自己的无知。 

       对于一个非计算机专业的人来说, 你跟他说并查集, 就有点像你对着计算机专业的人说Gibbs现象或者FFT一样, 你懂的。 后来, 某公司的招聘笔试题目中, 又出现并查集, 让我们一起来看看这个题目吧:

 

       假如已知有 n 个人和 m 对好友关系 (存于数字 r) 。 如果两个人是直接或间接的好友 (好友的好友的好友...) , 则认为他们属于同一个朋友圈,请写程序求出这 n 个人里一共有多少个朋友圈。 假如:n = 5 , m = 3 , r = {{1 , 2} , {2 , 3} , {4 , 5}},表示有 5 个人,1 和 2 是好友,2 和 3 是好友,4 和 5 是好友,则 1、2、3 属于一个朋友圈,4、5 属于另一个朋友圈,结果为 2 个朋友圈。

       其实, 这是个并查集的问题, 比较简单。 

 

       下面, 我们来写个并查集的程序玩玩, 加深对并查集的理解:

 

// taoge的并查集

#include <iostream>
using namespace std;

#define N 1000
int leader[N + 1] = {0}; // 先搞一个充分大的数组

// 初始化
void setLeader()
{
	int i = 1;
	for(i = 1; i <= N; i++)
	{
		leader[i] = i; // 初始化时, 将自己初始化为自己的领导
	}
}

// 查找领导, 看看究竟是谁(实际上, 还可以进行路径压缩优化)
int findLeader(int n) 
{
	int r = n;
	while(leader[r] != r)
	{
		r = leader[r]; // 没找到的话, 一直往上找
	}

	return r;
}

// 将两个领导带领的团队融合, 从此, leaderX和leaderY建立了新的统一战线, 是一个大家庭团队了
void uniteSet(int leaderX, int leaderY)
{
	leader[leaderX] = leaderY;  // leader[leaderY] = leaderX;
}

// 输入数组, 每一行表示一个集合关系, 比如第一行表示3和4属于一个集合团队
int input[] = 
{
	3, 4,
	4, 2,
	7, 6, 
	5, 1,
	3, 9,
	11, 8,
	6, 10,
	9, 13,
	11, 12,
};

// 测试数组, 测试每行的两个整数是否属于同一个大的家庭团队
int test[] =
{
	3, 2,
	9, 4,
	7, 10,
	6, 7,
	13, 4,
	8, 12,

	6, 9,
	4, 7,
	11, 10,
	1, 2,
	12, 13,
	7, 13,
};


int main()
{
	int numberOfSets = 13; // 总共有13个元素, 即1, 2, 3, 4, ...., 13

	// 初始化领导
	setLeader();

	int i = 0;
	int j = 0;
	int n = sizeof(input) / sizeof(input[0]) / 2;
	for(j = 0; j < n; j++)
	{
		int u = input[i++];
		int v = input[i++];
		
		// 找领导
		u = findLeader(u);
		v = findLeader(v);

		// 领导不相等, 则融合着两个团队, 合二为一
		if(u != v)
		{
			uniteSet(u, v);
			numberOfSets--;
		}
	}

	i = 0;
	n = sizeof(test) / sizeof(test[0]) / 2;
	for(j = 0; j < n; j++)
	{
		int u = test[i++];
		int v = test[i++];
		
		// 找领导
		u = findLeader(u);
		v = findLeader(v);

		// 如果领导不相同, 则不属于一个团队; 如果两个领导相同, 则肯定属于一个团队
		if(u != v)
		{
			cout << "NO" << endl;
		}
		else
		{
			cout << "YES" << endl;
		}
	}


	// 其实, 经合并后, 最后的集合是4个:
	// {3, 4, 2, 9, 13}, {7, 6, 10,}, {5, 1}, {11, 8, 12}
	cout << numberOfSets << endl;

	return 0;
}

      结果为:

 

YES
YES
YES
YES
YES
YES
NO
NO
NO
NO
NO
NO
4

 

       其实, 并查集很简单, 无非就是查查并并的操作。 不过, 并查集的思想, 确实很优秀。 要说明的是, 上述代码其实可以优化, 比如路径压缩等。

 

 

       如果大家觉得上述程序不太好理解, 那就请参考:http://blog.csdn.net/dellaserss/article/details/7724401这篇博文,那篇博文是转载的, 写的通俗易通, 形象生动,可读性强。 最后, 我把那篇文章的一个图借鉴过来, 欣赏一下, 挺有意思的(在此, 特别感谢下图的原作者羡慕):

 

       OK,  本文先到此为止。

 

 


 

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值