当年, 我在一个公司实习, 某次, 在一次算法交流的过程中, 我第一次听到了并查集这个看似高大上的概念, 也再一次感觉到了自己的无知。
对于一个非计算机专业的人来说, 你跟他说并查集, 就有点像你对着计算机专业的人说Gibbs现象或者FFT一样, 你懂的。 后来, 某公司的招聘笔试题目中, 又出现并查集, 让我们一起来看看这个题目吧:
假如已知有 n 个人和 m 对好友关系 (存于数字 r) 。 如果两个人是直接或间接的好友 (好友的好友的好友...) , 则认为他们属于同一个朋友圈,请写程序求出这 n 个人里一共有多少个朋友圈。 假如:n = 5 , m = 3 , r = {{1 , 2} , {2 , 3} , {4 , 5}},表示有 5 个人,1 和 2 是好友,2 和 3 是好友,4 和 5 是好友,则 1、2、3 属于一个朋友圈,4、5 属于另一个朋友圈,结果为 2 个朋友圈。
其实, 这是个并查集的问题, 比较简单。
下面, 我们来写个并查集的程序玩玩, 加深对并查集的理解:
// taoge的并查集
#include <iostream>
using namespace std;
#define N 1000
int leader[N + 1] = {0}; // 先搞一个充分大的数组
// 初始化
void setLeader()
{
int i = 1;
for(i = 1; i <= N; i++)
{
leader[i] = i; // 初始化时, 将自己初始化为自己的领导
}
}
// 查找领导, 看看究竟是谁(实际上, 还可以进行路径压缩优化)
int findLeader(int n)
{
int r = n;
while(leader[r] != r)
{
r = leader[r]; // 没找到的话, 一直往上找
}
return r;
}
// 将两个领导带领的团队融合, 从此, leaderX和leaderY建立了新的统一战线, 是一个大家庭团队了
void uniteSet(int leaderX, int leaderY)
{
leader[leaderX] = leaderY; // leader[leaderY] = leaderX;
}
// 输入数组, 每一行表示一个集合关系, 比如第一行表示3和4属于一个集合团队
int input[] =
{
3, 4,
4, 2,
7, 6,
5, 1,
3, 9,
11, 8,
6, 10,
9, 13,
11, 12,
};
// 测试数组, 测试每行的两个整数是否属于同一个大的家庭团队
int test[] =
{
3, 2,
9, 4,
7, 10,
6, 7,
13, 4,
8, 12,
6, 9,
4, 7,
11, 10,
1, 2,
12, 13,
7, 13,
};
int main()
{
int numberOfSets = 13; // 总共有13个元素, 即1, 2, 3, 4, ...., 13
// 初始化领导
setLeader();
int i = 0;
int j = 0;
int n = sizeof(input) / sizeof(input[0]) / 2;
for(j = 0; j < n; j++)
{
int u = input[i++];
int v = input[i++];
// 找领导
u = findLeader(u);
v = findLeader(v);
// 领导不相等, 则融合着两个团队, 合二为一
if(u != v)
{
uniteSet(u, v);
numberOfSets--;
}
}
i = 0;
n = sizeof(test) / sizeof(test[0]) / 2;
for(j = 0; j < n; j++)
{
int u = test[i++];
int v = test[i++];
// 找领导
u = findLeader(u);
v = findLeader(v);
// 如果领导不相同, 则不属于一个团队; 如果两个领导相同, 则肯定属于一个团队
if(u != v)
{
cout << "NO" << endl;
}
else
{
cout << "YES" << endl;
}
}
// 其实, 经合并后, 最后的集合是4个:
// {3, 4, 2, 9, 13}, {7, 6, 10,}, {5, 1}, {11, 8, 12}
cout << numberOfSets << endl;
return 0;
}
结果为:
YES
YES
YES
YES
YES
YES
NO
NO
NO
NO
NO
NO
4
其实, 并查集很简单, 无非就是查查并并的操作。 不过, 并查集的思想, 确实很优秀。 要说明的是, 上述代码其实可以优化, 比如路径压缩等。
如果大家觉得上述程序不太好理解, 那就请参考:http://blog.csdn.net/dellaserss/article/details/7724401这篇博文,那篇博文是转载的, 写的通俗易通, 形象生动,可读性强。 最后, 我把那篇文章的一个图借鉴过来, 欣赏一下, 挺有意思的(在此, 特别感谢下图的原作者):
OK, 本文先到此为止。