代码的正常分支需要打印log吗?

      之前做某嵌入式开发, 大家养成的习惯是, 正常分支不打印log,  我觉得这是十分扯淡的。 到底要不要打印log, 是根据定位问题的需要来确定的, 而且, 不能让log在那里刷刷刷。

      当然, 这还牵涉到一个log级别的问题。

      总之, 法无定法, 唯一的法则是: 方便自己将来定位问题, 且不要让log一直刷刷刷。


      这么看来, 只要满足上述法则, 你爱怎么地怎么地。




  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
在多分支神经网络中,动态调整权重的方法与单一神经网络基本相同。以下是一个简单的多分支神经网络梯度下降的代码实现: ``` import numpy as np # 定义激活函数 def sigmoid(x): return 1 / (1 + np.exp(-x)) # 定义损失函数 def loss_function(y_pred, y_true): return -np.mean(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - y_pred)) # 定义梯度下降函数 def gradient_descent(X, y, num_hidden_units, learning_rate=0.01, num_iterations=1000): # 初始化权重和偏置 num_input_units = X.shape[1] num_output_units = y.shape[1] W1 = np.random.randn(num_input_units, num_hidden_units) b1 = np.zeros(num_hidden_units) W2 = np.random.randn(num_hidden_units, num_output_units) b2 = np.zeros(num_output_units) # 迭代训练 for i in range(num_iterations): # 前向传播 z1 = np.dot(X, W1) + b1 h1 = sigmoid(z1) z2 = np.dot(h1, W2) + b2 y_pred = sigmoid(z2) # 反向传播 dz2 = y_pred - y dW2 = np.dot(h1.T, dz2) / X.shape[0] db2 = np.mean(dz2, axis=0) dh1 = np.dot(dz2, W2.T) dz1 = dh1 * h1 * (1 - h1) dW1 = np.dot(X.T, dz1) / X.shape[0] db1 = np.mean(dz1, axis=0) # 更新权重和偏置 W2 -= learning_rate * dW2 b2 -= learning_rate * db2 W1 -= learning_rate * dW1 b1 -= learning_rate * db1 # 打印损失函数值 if i % 100 == 0: print("Iteration %d, loss = %f" % (i, loss_function(y_pred, y))) return W1, b1, W2, b2 ``` 在这个例子中,我们使用一个简单的两层多分支神经网络来演示梯度下降的过程。`gradient_descent` 函数中,我们首先初始化权重和偏置,然后对神经网络进行迭代训练,每次迭代中根据前向传播和反向传播计算梯度,并根据学习率和梯度信息更新权重和偏置。最后,我们输出训练过程中损失函数的值,可以看到在迭代过程中损失函数逐渐减小,说明神经网络的拟合效果逐渐变好。需要根据具体情况选择合适的方法,或者结合多种方法来解决训练数据不平衡的问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值