队列&栈//每日温度

根据每日 气温 列表,请重新生成一个列表,对应位置的输入是你需要再等待多久温度才会升高的天数。如果之后都不会升高,请输入 0 来代替。

例如,给定一个列表 temperatures = [73, 74, 75, 71, 69, 72, 76, 73],你的输出应该是 [1, 1, 4, 2, 1, 1, 0, 0]

提示:气温 列表长度的范围是 [1, 30000]。每个气温的值的都是 [30, 100] 范围内的整数。

class Solution {
    public int[] dailyTemperatures(int[] temperatures) {
        Stack<Entry> stack = new Stack<>();
        int[] res = new int[temperatures.length];
        for(int i = 0; i < temperatures.length; i++){
            if(stack.isEmpty()){
                stack.push(new Entry(temperatures[i],i));
                continue;
            }
            if(temperatures[i] <= stack.peek().val)
                stack.push(new Entry(temperatures[i],i));
            else
            {
                int j = 1;
                while(!stack.isEmpty()&&temperatures[i] > stack.peek().val){
                    Entry tmp = stack.pop();
                    res[tmp.index] = i - tmp.index;
                }
                stack.push(new Entry(temperatures[i],i));
            }
        }
        return res;
    }
    private class Entry{
        public int val;
        public int index;
        public Entry(int val,int index){
            this.val = val;
            this.index = index;
        }
    }
}
class Solution {
public:
    vector<int> dailyTemperatures(vector<int>& temperatures) {
        vector<int> result;
        stack<int> record;
        for(int i = temperatures.size()-1; i>=0; i--){
            while(record.size()>0&&temperatures[record.top()]<=temperatures[i])
            {
                record.pop();
            }
            int wait_day = record.size()==0?0:record.top()-i;
            result.insert(result.begin(),wait_day);
            record.push(i);
        }
        return result;
    }
};

 

### 关于单调和单调队列 #### 定义与特性 单调是一种特殊的结构,在这种中,元素按照特定的顺序排列,即要么严格递增要么严格递减。当新元素加入时,会移除所有违反该顺序的现有顶部元素[^3]。 单调队列则是在两端都可以进行插入删除操作的数据结构,并且内部存储着按一定条件筛选后的有序序列。其特点是能够在O(1)时间内获取当前窗口内的最大值或最小值,非常适合解决涉及固定大小子数组/子列表的最大最小问题[^2]。 #### 应用实例 对于下一个更大元素的问题,可以利用单调递减来高效寻找右侧第一个大于当前位置数值的位置;而对于每日温度这样的题目,则通过循环数组的方式配合单调完成两次遍历来处理环形数组的情况[^4]。 ```cpp // C++代码片段展示如何使用单调解决问题 class Solution { public: vector&lt;int&gt; nextGreaterElements(vector&lt;int&gt;&amp; nums) { int n = nums.size(); if (n == 0) { return {}; } vector&lt;int&gt; result(n); std::stack&lt;int&gt; s; // 循环两遍模拟环形数组效果 for (int i = n * 2 - 1; i &gt;= 0; --i) { while (!s.empty() &amp;&amp; s.top() &lt;= nums[i % n]) s.pop(); result[i % n] = s.empty() ? -1 : s.top(); s.push(nums[i % n]); } return result; } }; ``` 在滑动窗口类问题上,比如求解长度固定的连续子串内最值,采用双端队列形式的单调队列能很好地满足需求。每当有新的候选成员进入窗口时,就将其前面那些不可能成为最优解的小数弹出去,从而始终保持队头指向的就是所求极值所在位置[^1]。 ```java import java.util.Deque; import java.util.LinkedList; public class MaxSlidingWindow { public static List&lt;Integer&gt; maxSlidingWindow(int[] nums, int k) { Deque&lt;Integer&gt; deque = new LinkedList&lt;&gt;(); List&lt;Integer&gt; res = new ArrayList&lt;&gt;(); for (int i = 0; i &lt; nums.length; ++i) { // 移除非窗口范围内的索引 if (!deque.isEmpty() &amp;&amp; deque.peekFirst() &lt;= i - k) deque.pollFirst(); // 维护一个降序的双端队列 while (!deque.isEmpty() &amp;&amp; nums[deque.peekLast()] &lt; nums[i]) deque.pollLast(); deque.offerLast(i); // 当前窗口已形成,记录最大值 if (i + 1 &gt;= k) res.add(nums[deque.peekFirst()]); } return res; } } ``` #### 使用场景总结 - **单调**适用于需要找到最近的一个更小(大)元素的情形,如股票买卖最佳时机、柱状图中最大的矩形面积等问题。 - **单调队列**主要用于解决具有时间窗约束下的优化查询任务,例如计算给定区间内的极大值或极小值等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值