手机整机测试

前言

做了一段时间的手机整机测试工作,虽然没有全面的去做,毕竟手机整机测试涉及的方方面面非常的广泛,我只负责其中的一小部分,比如功耗和Appium Automation部分,当然也设计Monkey相关工具的使用。

现简单汇总一下手机整机测试的一些信息点,比较粗略的记录一下主要测试点/方向。

概述

手机的整机测试(也称为手机全面测试或手机集成测试)是确保手机在各个方面都符合预期性能和质量标准的过程。这通常包括硬件、软件和用户界面的测试。

XMind思维导图


来源: Transcendent
文章作者: Gavin Wang
文章链接: 手机整机测试 | Transcendent
本文章著作权归作者所有,任何形式的转载都请注明出处。

### 矩阵运算中左乘与右乘的区别 在矩阵运算中,区分左乘和右乘对于理解和应用线性代数至关重要。当讨论变换矩阵 \( A \) 对向量 \( x \) 的作用时,\( Ax \) 表示的是左乘操作,即先执行矩阵再作用于向量;而 \( xA \),则表示右乘操作,在某些情况下可能不合法或具有不同的含义。 #### 左乘的影响 左乘通常用于描述主动变换,比如旋转、缩放和平移等几何变换。在这种场景下,给定一个列向量 \( x \),通过左乘变换矩阵 \( A \),可以实现对该向量的空间位置改变: \[ y = Ax \] 这里,\( y \) 是经过变换后的新的空间位置[^1]。这种形式广泛应用于计算机图形学等领域,用来处理物体的姿态变化等问题。 #### 右乘的应用及其差异 相比之下,右乘更多地涉及到被动变换的概念,也就是坐标系本身的转换而非对象本身的位置变动。例如,当我们说某个固定点相对于不同参照系下的坐标如何变化时,就会用到右乘的形式。此时,假设我们有一个行向量 \( r \),它代表某一点在一个特定坐标系中的坐标,则可以通过如下方式来获取其在另一个新坐标系里的坐标值: \[ r' = rB \] 其中 \( B \) 就是从旧坐标系映射至新坐标系所需的过渡矩阵[^2]。值得注意的是,并不是所有的矩阵都支持右乘操作,尤其是当涉及非方阵的情况时。 #### 物理意义的不同解读 关于两者物理意义上是否存在本质差别这一点,取决于具体上下文环境和个人视角。从某种角度来看,无论是视为“向量绕着原点转动”,还是认为是“整个坐标系统发生了位移”,只要最终效果一致即可接受这两种解释方法[^3]。然而,在实际编程调试过程中发现,即使表述看似相同的操作(如同为Z轴上的旋转),由于所选参考方向等因素的影响,仍需谨慎对待左右乘的选择以确保算法逻辑无误[^4]。 ```python import numpy as np # 定义一个简单的二维旋转变换矩阵 R 和 向量 v angle = np.pi / 4 # 45度角 R = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]]) v = np.array([1, 0]) # 计算左乘的结果 left_multiply_result = R @ v.reshape(-1, 1) print("Left multiply result:\n", left_multiply_result.flatten()) # 如果尝试做右乘的话,因为这里是列向量所以我们转置后再相乘 right_multiply_result = (v.T @ R).T print("\nRight multiply result with transposed vector:\n", right_multiply_result.flatten()) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值