octave 与线性代数

这篇博客介绍了矩阵的运算,包括行列式的计算、初等变换、对角矩阵、行列式展开以及逆矩阵的求解。还讨论了线性方程组的解法,特征值和特征向量的概念,以及正交矩阵的性质。内容涵盖矩阵的乘法、转置、相似变换和对角化等核心概念。
摘要由CSDN通过智能技术生成

计算行列式

det(A)

>> A = [0 2 1 -1;1 -5 3 -4;1 3 -1 2;-5 1 3 -3]
A =

   0   2   1  -1
   1  -5   3  -4
   1   3  -1   2
  -5   1   3  -3

>> det(A)
ans =  40.000

 

行列式的初等变换

  • 对行列式两行/列交换 |B| = -|A|
  • 对行列式数乘一行/列 |B|= λ|A|
  • 对行列式k倍加上另外一行 |B|= |A|

 

对角矩阵

diag(A)

主对角线,副对角线,三阶行列式,全排列, pn=n! 

一个排列中所有逆序的总数叫做这个排列的逆序数  奇排列,偶排列,求逆序数

 n阶行列式D ,det(aij),(i,j) 元。 上(下)三角形行列式,对角行列式

行列式与它的转置行列式相等。对换行列式的两行,行列式变号。

把行列式的某一行的各元素乘同一数然后加到另一行对应的元素上去,行列式不变

余子式,

 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和

D(i,j) 元的余子式和代数余子式 

 

 行列式按行展开法则

行列式某一行的元素与另一行的对应元素的代数余子式乘积之和等于零

n元非齐次线性方程组

同型矩阵。系数矩阵,未知数矩阵,常数项矩阵,增广矩阵

线性变换。对角矩阵,

 恒等变换,单位矩阵,单位阵,E(i,j)  

矩阵和线性变换存在一一对应的关系。

负矩阵。 

手算行列式

>> A = [0 2 1 -1;1 -5 3 -4;1 3 -1 2;-5 1 3 -3]
A =

   0   2   1  -1
   1  -5   3  -4
   1   3  -1   2
  -5   1   3  -3
>> A = A([2,1,3,4],:)
A =

   1  -5   3  -4
   0   2   1  -1
   1   3  -1   2
  -5   1   3  -3

>> A(3,:) = A(1,:) * -1 + A(3,:)
A =

   1  -5   3  -4
   0   2   1  -1
   0   8  -4   6
  -5   1   3  -3

>> A(4,:) = A(1,:) * 5 + A(4,:)
A =

    1   -5    3   -4
    0    2    1   -1
    0    8   -4    6
    0  -24   18  -23

>> A(3,:) = A(2,:) * -4 + A(3,:)
A =

    1   -5    3   -4
    0    2    1   -1
    0    0   -8   10
    0  -24   18  -23

>> A(4,:) = A(2,:)*12 + A(4,:)
A =

    1   -5    3   -4
    0    2    1   -1
    0    0   -8   10
    0    0   30  -35

>> A(4,:) = A(3,:)*30/8+A(4,:)
A =

    1.00000   -5.00000    3.00000   -4.00000
    0.00000    2.00000    1.00000   -1.00000
    0.00000    0.00000   -8.00000   10.00000
    0.00000    0.00000    0.00000    2.50000

>> C = diag(A)
C =

   1.0000
   2.0000
  -8.0000
   2.5000

>> prod(C)
ans = -40

向量乘积

prod(A)

AB,A左乘B,BA,A右乘B,

对于两个n阶方阵A、B,若AB=BA,称方阵A与B是可交换的。

纯量阵同阶方阵,矩阵的幂,

(A+B)

 A与B可交换时,才有上面的式子。

方阵A的行列式,记作detA 或|A|

|AB| = |A||B|

伴随矩阵。A*

逆矩阵 

矩阵的转置

矩阵后面加’

>> A = [1 0;-1 2;2 3]
A =

   1   0
  -1 2    2   3

>> B = [1 -1;4 7]
B =

   1  -1
   4   7

>> (A*B)'
ans =

    1    7   14
   -1 15 19 
>> B'*A'
ans =

    1    7   14
   -1 15 19 
>>

逆矩阵

inv(A)

>> A = [1 0 0;0 2 0;0 0 -3]
A =

   1   0   0
   0   2   0
   0   0  -3

>> inv(A)
ans =

   1.00000  -0.00000   0.00000
   0.00000   0.50000   0.00000
   0.00000   0.00000  -0.33333

初等变换

数乘 i 行 ri(k)

A(i,:) = k*A(i,:)

数乘 i 行加到 j 行 rij(k)

A(j,:) = k*A(i,:) + A(j,:)

交换i j行 r(ij

A = A([按i j交换好了的顺序],:)

!!!列相反

e.g:对A进行变化成I|O 形式

>> A = [2 1 -4;1 -2 3]
A =

   2   1  -4
   1  -2   3

>> A = A([2 1],:)
A =

   1  -2   3
   2   1  -4

>> A(2,:) = -2 * A(1,:) + A(2,:)
A =

    1   -2    3
    0    5  -10

>> A(2,:) = 1/5 * A(2,:)
A =

   1  -2   3
   0   1  -2

>> A(1,:) = 2 * A(2,:) + A(1,:)
A =

   1   0  -1
   0   1  -2

>> A(:,3) = A(:,1) + A(:,3)
A =

   1   0   0
   0   1  -2

>> A(:,3) = 2 * A(:,2) + A(:,3)
A =

   1   0   0
   0   1   0

A是可逆矩阵的充分必要条件是|A| 不等于0,非奇异矩阵

若A、B为同阶矩阵且均可逆,则AB亦可逆

 

 当A可逆,λ、μ为整数时有,

 在这里插入图片描述

 矩阵A的m次多项式

矩阵分块法,分块矩阵,

设A与B为m×n矩阵  1 行等价  充分必要条件  存在 m阶可逆矩阵  P,PA=B

2 等价的充要条件是 存在m阶可逆矩阵P及n阶可逆矩阵Q使 PAQ=B

初等矩阵

设A是一个m×n矩阵,对A施行一次初等行变换,相当于在A的左边乘响应的m阶初等矩阵。

方阵A可逆的充要条件是存在有限个初等矩阵P1,P2,P3  使, A=P1P3 ...

在m×n矩阵A中,。降秩矩阵

[x,y] 称为向量x与y的内积

施瓦兹不等式

 

||x||称为n维向量x的长度(范数)

若n维向量a1,a2,.....an是一组两两正交的非零向量,则a1,a2,an线性无关

 标准正交基

设e1,e2...er是V的一个标准正交基,那么V中任一向量a应能有e1,e2.....er线性表示,

 

矩阵的转置

矩阵后面加’

>> A = [1 0;-1 2;2 3]
A =

   1   0
  -1 2    2   3

>> B = [1 -1;4 7]
B =

   1  -1
   4   7

>> (A*B)'
ans =

    1    7   14
   -1 15 19 
>> B'*A'
ans =

    1    7   14
   -1 15 19 
>>

逆矩阵

inv(A)

>> A = [1 0 0;0 2 0;0 0 -3]
A =

   1   0   0
   0   2   0
   0   0  -3

>> inv(A)
ans =

   1.00000  -0.00000   0.00000
   0.00000   0.50000   0.00000
   0.00000   0.00000  -0.33333

初等变换

数乘 i 行 ri(k)

A(i,:) = k*A(i,:)

数乘 i 行加到 j 行 rij(k)

A(j,:) = k*A(i,:) + A(j,:)

交换i j行 r(ij

A = A([按i j交换好了的顺序],:)

!!!列相反

e.g:对A进行变化成I|O 形式

>> A = [2 1 -4;1 -2 3]
A =

   2   1  -4
   1  -2   3

>> A = A([2 1],:)
A =

   1  -2   3
   2   1  -4

>> A(2,:) = -2 * A(1,:) + A(2,:)
A =

    1   -2    3
    0    5  -10

>> A(2,:) = 1/5 * A(2,:)
A =

   1  -2   3
   0   1  -2

>> A(1,:) = 2 * A(2,:) + A(1,:)
A =

   1   0  -1
   0   1  -2

>> A(:,3) = A(:,1) + A(:,3)
A =

   1   0   0
   0   1  -2

>> A(:,3) = 2 * A(:,2) + A(:,3)
A =

   1   0   0
   0   1   0

 

余子式
一个行列式 划掉i行j列 剩下的(n-1)^2 构成的行列式 称为Mij

代数余子式
Aij = (-1)^(i+j)Mij
称为代数余子式

行列式展开
det(A) = ai1Ai1 + ai2Ai2 + … + ainAin
det(A) = a1jA1j + a2jA2j + … + anjAnj

通过行列式展开来计算行列式
主要是用0

>> A = [3 0 0 0;3 2 4 -1;-1 0 5 0;2 0 6 -1]
A =

   3   0   0   0
   3   2   4  -1
  -1   0   5   0
   2   0   6  -1

>> B = A(2:4,2:4)
B =

   2   4  -1
   0   5   0
   0   6  -1

>> C = B(2:3,2:3)
C =

   5   0
   6  -1

>> D = 3*(-1)^(1+1)*det(B)
D = -30
>> 3*2*-5
ans = -30
>> det(A)
ans = -30.000

如果n阶矩阵A满足,

称A为正交矩阵。方阵A为正交矩阵的充要条件是A的列向量都是单位向量,两两正交。

若P为正交矩阵,则线性变换y=Px为正交变换,经正交变换线段长度不变,从而三角形的形状保持不变,正交变换的有点。

特征值。 Ax=λx。特征向量。

特征方程,特征多项式,、

设λ1,λ2,λm是方阵A的m个特征值,p1,p2,p3...pm依次是与之对应的特征向量,如果λ1,λ2,λm各不相等,则 p1,p2,p3...pm线性无关

设A、B都是n阶矩阵,若有可逆矩阵P,使得,则称B与A相似, 相似变换。 可逆矩阵P称为把A变成B的相似变换矩阵。

若n阶矩阵A与B相似,则A与B的特征多项式想通,且A与B的特征值亦相同。 

对n阶矩阵A,寻求相似变换矩阵P使,把矩阵A对角化。

n阶矩阵A与对角矩阵相似(即A能对角化)的充要条件是A有n个线性无关的特征向量。

如果n阶矩阵A的n个特征值互不相等,则A与对角矩阵相似。

对阵矩阵的对角化。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值