TensorZero开源程序创建了一个反馈循环来优化 LLM 应用程序,将生产数据转化为更智能、更快、更便宜的模型

​一、软件介绍

文末提供程序和源码下载

      TensorZero 是一个开源框架,用于构建生产级 LLM 应用程序。它统一了 LLM 网关、可观测性、优化、评估和实验。

  1. 集成我们的模型网关
  2. 发送指标或反馈
  3. 优化提示、模型和推理策略
  4. 观察您的 LLM 随时间推移而改进

它通过统一以下功能为 LLMs 提供了一个数据和学习 

  • 推理: 一个 API 适用于所有 LLM,<1ms P99 开销
  • 可观察性:→您的数据库进行推理和反馈
  • 优化: 从提示到微调和 RL
  • 评估: 比较提示、模型、推理策略
  • 实验: 内置 A/B 测试、路由、回退

二、TensorZero 与其他 LLM 框架有何不同?

1. TensorZero 使您能够根据生产指标和人工反馈优化复杂的 LLM 应用程序。
2. TensorZero 支持工业规模的 LLM 应用程序的需求:低延迟、高吞吐量、类型安全、自托管、GitOps、可定制性等。
3. TensorZero 统一了整个 LLMOps 堆栈,创造了复合优势。例如,LLM 评估可用于与 AI 评委一起微调模型。

      支持所有主要编程语言。您可以将 TensorZero 与我们的 Python 客户端、任何 OpenAI SDK 或我们的 HTTP API 一起使用。

      TensorZero 是 100% 自托管和开源的。没有付费功能。

三、用法: Python — TensorZero 客户端(推荐)

您可以使用 TensorZero Python 客户端访问任何提供程序。

  1. pip install tensorzero
    pip 安装 tensorzero
  2. Optional: Set up the TensorZero configuration.
    可选:设置 TensorZero 配置。
  3. Run inference:  运行推理:
from tensorzero import TensorZeroGateway  # or AsyncTensorZeroGateway


with TensorZeroGateway.build_embedded(clickhouse_url="...", config_file="...") as client:
    response = client.inference(
        model_name="openai::gpt-4o-mini",
        # Try other providers easily: "anthropic::claude-3-7-sonnet-20250219"
        input={
            "messages": [
                {
                    "role": "user",
                    "content": "Write a haiku about artificial intelligence.",
                }
            ]
        },
    )

See Quick Start for more information.

用法: Python — OpenAI 客户端

You can access any provider using the OpenAI Python client with TensorZero.
您可以使用带有 TensorZero 的 OpenAI Python 客户端访问任何提供程序。

  1. pip install tensorzero
    pip 安装 tensorzero
  2. Optional: Set up the TensorZero configuration.
    可选:设置 TensorZero 配置。
  3. Run inference:  运行推理:
from openai import OpenAI  # or AsyncOpenAI
from tensorzero import patch_openai_client

client = OpenAI()

patch_openai_client(
    client,
    clickhouse_url="http://chuser:chpassword@localhost:8123/tensorzero",
    config_file="config/tensorzero.toml",
    async_setup=False,
)

response = client.chat.completions.create(
    model="tensorzero::model_name::openai::gpt-4o-mini",
    # Try other providers easily: "tensorzero::model_name::anthropic::claude-3-7-sonnet-20250219"
    messages=[
        {
            "role": "user",
            "content": "Write a haiku about artificial intelligence.",
        }
    ],
)

软件下载

夸克网盘分享

本文信息来源于GitHub作者地址:GitHub - tensorzero/tensorzero: TensorZero creates a feedback loop for optimizing LLM applications — turning production data into smarter, faster, and cheaper models.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值