2017.08.03回顾

今天的工作比较单纯,就是继续整理建模数据,从中也发现了数据中明显的错误,还有些数值型的错误还需要仔细check,没什么技术含量,今天比较有收获的是还是那个问题:是否变量分布越大,WOE变化也越大?

方法是采用模拟的形式,变量分成6类,固定每类的好坏比,固定总样本数,找到满足好坏比,总数约束,整数约束的一共79种分布,这其中33组的WOE唯一,46组WOE存在重复,所以分布变了,WOE不变的概率是多少呢?1%的概率不变,这个问题我还让了一手,因为我固定了每组好坏比,固定了总数,如果固定好坏比,不固定总数,那WOE更难不变,那如果好坏比和总数都不固定呢?固定总数是合理的,比如我真正放款了,我可以抽样出来和建模的总数一样,这时候分布可能和建模时候有了一些差异,可以计算一个PSI,那我现在假设好坏比不变,但现实中计算出Bt和Gt,很难有Bt+Gt=S,所以我们把S和好坏比都调成了比较整的形式,于是找到了79种分布,这个时候用33组独立的随便找一个为对照组,计算PSI变化和WOE变化的对应关系,WOE变化采用的是类MSE的形式,但是并没有展示出WOE的类MSE和PSI的同增同减,任选8组起始组,只有2组稍微有同增同减的趋势,难道我的猜想是错的?这个问题还有待研究!

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值