1.张量的拼接和切分
2.torch.reshape 张量的变换
3. torch.transpose
4. 张量的数学运算
加法:逐元素相加
5.线性回归模型
什么是线性回归:分析一个变量与另一个变量的关系
求解的步骤;
* 确定模型
* 选择损失函数
* 求梯度并更新w和b
6.机器学习的步骤
- 确定模型:模型也可以是函数,确定原有的数据的特征属于哪一类函数
- 训练模型:通过一些方法(最优化)确定函数中的参数
- 使用模型:将一些新的数据代入函数求值
1.张量的拼接和切分
2.torch.reshape 张量的变换
3. torch.transpose
4. 张量的数学运算
加法:逐元素相加
5.线性回归模型
什么是线性回归:分析一个变量与另一个变量的关系
求解的步骤;
* 确定模型
* 选择损失函数
* 求梯度并更新w和b
6.机器学习的步骤