PyTorch笔记2--张量操作和线性回归

张量操作

一、张量拼接

torch.cat(#将张量按维度dim进行拼接
    tensor,#张量序列
    dim=0,#要拼接的维度
    out=None
)
torch.stack(#在新创建的维度dim上进行拼接
    tensor,
    dim,
    out=None
)

二、张量切分

torch.chunk(#将张量按维度dim进行平均切分,返回值为张量列表,若不能整除最后一份张量小于其他张量
    input,#要切分的张量
    chunks,#要切分的份数
    dim=0#要切分的维度
)
torch.split(#将张量按维度dim进行切分,返回值为张量列表
    tensor,
    solit_size_or_sections,@为int时,表示每一份的长度,为list时按list元素切分
    dim=0
)

三、张量索引

torch.index_select(#维度dim上,按index索引数据,返回值为依索引数据拼接的张量
    input,#要索引的张量
    dim,#要索引的维度
    index,#要索引数据的序号
    out=None
)
torch.masked_select(#按mask中的True进行索引
    input,#要索引的张量
    mask,#与input同形状的布尔类型张量
    out=None
)

四、张量变换

torch.reshape(#变换张量形状,当张量在内存中是连续时,新张量与input共享数据内存
    input,#要变换的张量
    shape#新张量的形状
)
torch.transpose(#交换张量的两个维度
    input,#要变换的张量
    dim0,#要变换的维度
    dim1#要变换的维度
)

torch.t(input)#2维张量转置,对矩阵而言等价于torch.transpose(input,0,1)
torch.squeeze(#压缩长度为1的维度(轴)
    input,
    dim=None,#若为None,移除所有长度为1的轴,若指定维度,当且仅当该轴长度为1时,可以被移除
    out=None
)

torch.unsqueeze(#依据dim扩展维度
    input,
    dim,#扩展的维度
    out=None
)

张量数学运算

一、加减乘除

torch.add()
torch.addcdiv()
torch.addcmul()
torch.sub()
torch.div()
torch.mul()
torch.add(#逐元素计算input+alpha*other
    input,#第一个张量
    alpha=1,#乘项因子
    other,#第二个张量
    out=None
)

torch.addcmul(
    input,
    value=1,
    tensor1,
    tensor2,
    out=None
)

二、对数、指数、幂函数

torch.log(input,out=None)
torch.log10(input,out=None)
torch.log2(input,out=None)
torch.exp(input,out=None)
torch.pow()

三、三角函数

torch.abs(input,out=None)
torch.acos(input,out=None)
torch.cosh(input,out=None)
torch.cos(input,out=None)
torch.asin(input,out=None)
torch.atan(input,out=None)
torch.atan2(input,other,out=None)

线性回归

概念

        线性回归是分析一个变量与另一个(多个)变量之间关系的方法

        因变量:y

        自变量:x

        关系:线性  y = wx + b

        分析:求解w b

求解步骤

        1、确定模型 Model : y = wx + b

        2、选择损失函数 MSE:

        3、求解梯度并更新w b 

                w = w - LR * w.grad

                b = b - LR * w.grad

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值