PyTorch笔记2--张量操作和线性回归

张量操作

一、张量拼接

torch.cat(#将张量按维度dim进行拼接
    tensor,#张量序列
    dim=0,#要拼接的维度
    out=None
)
torch.stack(#在新创建的维度dim上进行拼接
    tensor,
    dim,
    out=None
)

二、张量切分

torch.chunk(#将张量按维度dim进行平均切分,返回值为张量列表,若不能整除最后一份张量小于其他张量
    input,#要切分的张量
    chunks,#要切分的份数
    dim=0#要切分的维度
)
torch.split(#将张量按维度dim进行切分,返回值为张量列表
    tensor,
    solit_size_or_sections,@为int时,表示每一份的长度,为list时按list元素切分
    dim=0
)

三、张量索引

torch.index_select(#维度dim上,按index索引数据,返回值为依索引数据拼接的张量
    input,#要索引的张量
    dim,#要索引的维度
    index,#要索引数据的序号
    out=None
)
torch.masked_select(#按mask中的True进行索引
    input,#要索引的张量
    mask,#与input同形状的布尔类型张量
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值