tensorflow对应的python版本清单

C:\Users\ggbond\AppData\Local\anaconda3\python.exe C:/Users/ggbond/Desktop/基于深度学习的中文语音识别系统(完整代码+报告+毕业设计)/deepspeechrecognition/test.py 2025-03-17 00:57:49.368113: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. 2025-03-17 00:57:50.202278: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. Traceback (most recent call last): File "C:\Users\ggbond\Desktop\基于深度学习的中文语音识别系统(完整代码+报告+毕业设计)\deepspeechrecognition\test.py", line 4, in <module> import tensorflow as tf File "C:\Users\ggbond\AppData\Local\anaconda3\Lib\site-packages\tensorflow\__init__.py", line 49, in <module> from tensorflow._api.v2 import __internal__ File "C:\Users\ggbond\AppData\Local\anaconda3\Lib\site-packages\tensorflow\_api\v2\__internal__\__init__.py", line 13, in <module> from tensorflow._api.v2.__internal__ import feature_column File "C:\Users\ggbond\AppData\Local\anaconda3\Lib\site-packages\tensorflow\_api\v2\__internal__\feature_column\__init__.py", line 8, in <module> from tensorflow.python.feature_column.feature_column_v2 import DenseColumn # line: 1777 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\ggbond\AppData\Local\anaconda3\Lib\site-packages\tensorflow\python\feature_column\feature_column_v2.py", line 38, in <module> from tensorflow.python.feature_column import feature_column as fc_old File "C:\Users\ggbond\AppData\Local\anaconda3\Lib\site-packages\tensorflow\python\feature_column\feature_column.py", line 41, in <module> from tensorflow.python.layers import base File "C:\Users\ggbond
03-17
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值