深度学习
文章平均质量分 71
乐乐lelele
既然选择了远方,便只顾风雨兼程
展开
-
【pytorch】并行训练加载模型权重报错原因及解决方法
。原创 2023-06-29 15:54:54 · 1527 阅读 · 0 评论 -
自监督学习(Self-supervised Learning)
自监督学习(Self-supervised learning)是这两年比较热门的一个研究领域,它旨在对于无标签数据,通过设计辅助任务(Proxy tasks)来挖掘数据自身的表征特性作为监督信息,来提升模型的特征提取能力原创 2021-12-08 10:21:16 · 51147 阅读 · 0 评论 -
浅谈知识蒸馏(Knowledge Distillation)
前言:在实验室做算法研究时,我们最看重的一般是模型精度,因为精度是我们模型有效性的最直接证明。而在公司做研发时,除了算法精度,我们还很关注模型的大小和内存占用。因为实验室模型一般运行在服务器上,很少有运算资源不足的情况,但是公司研发的算法功能最终都是要部署到实际的产品上的,像手机或者小型计算平台,其运算资源是很有限的。所以算法工程师在公司做预研时,算法建模一般都分两部分:先根据需求建模,并尽可能提高模型精度;然后进行模型压缩,在保证算法精度的情况下尽可能减少其参数量。常用的模型压缩方法: 知识蒸馏、权重原创 2021-12-09 12:49:46 · 1958 阅读 · 1 评论 -
【论文阅读-姿态估计】Differentiable Hierarchical Graph Grouping for Multi-Person Pose Estimation
本文将介绍一篇基于图模型的多人姿态估计方法,作者来自香港大学、商汤科技、南京大学和悉尼大学。论文链接: https://arxiv.org/abs/2007.11864v1代码链接: 尚未公开主要思想:现有的多人姿态估计模型一般分为一般分为两大类:top-down和bottom-up方法。Top-down的模型先对输入的图像进行目标检测,检测出图像中每个人的bounding box之后,通过单人姿态估计模型对每个人的姿态进行检测。而bottom-up的方法则是先通过关键点检测模型检测出图像中所有人原创 2021-06-26 18:18:20 · 673 阅读 · 0 评论 -
【论文阅读-姿态估计】ECCV2020_Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglemen
本文将介绍一种基于特征分离的无监督姿态特征学习模型,作者来自香港中文大学论文链接:https://arxiv.org/abs/2007.07053代码链接:https://github.com/NIEQiang001/unsupervised-human-pose主要思想:图1 本文提出的模型结构【参考文献】:[1] 迁移性好、多用途,港中文提出特征分离的无监督人类三维姿态表征...原创 2020-12-15 10:56:17 · 449 阅读 · 0 评论 -
【论文阅读-姿态估计】 CVPR2019_Deep High-Resolution Representation Learning for Human Pose Estimation
【论文阅读】 Deep High-Resolution Representation Learning for Human Pose Estimation_CVPR2019作者来自中科大和微软亚洲研究院论文链接:Deep High-Resolution Representation Learning for Human Pose Estimation_CVPR2019代码链接:https://github.com/leoxiaobin/deep-high-resolution-net.pytorch原创 2020-12-10 20:11:55 · 295 阅读 · 0 评论 -
【python】读取 .npy文件并存储为图像格式(代码)
深度网络时常会将数据集中的图像打包“.npy”格式来处理,有时候为了输出也会是该格式,所以我们需要将其读入并转化为图像格式。“.npy”文件是将数据集中的若干图像某一维度上叠加而来,我们可据此读取原图,python代码如下:#by hanlestudy@163.comimport numpy as npimport scipy.miscimgs_test = np.load('./pat...原创 2019-04-28 15:32:56 · 17662 阅读 · 13 评论 -
【Keras】报错 TypeError: __init__() got multiple values for argument ‘axis‘解决办法
问题描述:运行代码(基于Keras)的时候编译器报错,如下TypeError: __init__() got multiple values for argument 'axis'找到问题代码,是keras.layers.Concatenate函数使用出错:merge6 = Concatenate([drop4, up6],axis=3)解决办法:将上述代码修改为如下形式:mer...原创 2019-03-19 17:00:38 · 20840 阅读 · 0 评论 -
【Keras】调用“merge”报错TypeError: ‘module‘ object is not callable解决办法
问题描述:跑U-Net模型代码(基于Keras)的时候,遇到了如下问题:Traceback (most recent call last): File "/home/user7/myproject/Codes/unet.py", line 107, in <module> myunet.train() File "/home/user7/myproject/Code...原创 2019-03-19 16:54:36 · 9107 阅读 · 6 评论 -
服务器(Linux-Ubuntu)卸载并安装Anaconda、tensorflow-gpu及Conda常用操作命令
之前在服务器上跑深度学习代码时,一直用的虚拟环境(),安装很多包的时候需要管理员权限。虚拟环境安装教程推荐:https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/001432712108300322c61f256c74803b43bfd65c6f8d0d0000最近重新配置了ana...原创 2018-12-06 16:17:06 · 9186 阅读 · 0 评论 -
【Keras】提示Update your `Model` call to the Keras 2 API
跑模型代码(基于Keras)的时候,系统提示如下警告:UserWarning: Update your `Model` call to the Keras 2 API: `Model(outputs=Tensor("co..., inputs=Tensor("in...)`修改办法:model中的input和output后面加s。即:将model = Model(input = inp...原创 2018-12-19 14:38:08 · 4002 阅读 · 0 评论 -
Attention Model 及其发展现状概述
视觉注意力是人类视觉信息处理过程中一项重要的调节机制,在视觉注意力的引导下,人类能够从众多的视觉信息中快速地选择那些最重要、最有用、与当前行为最相关的感兴趣的视觉信息。当人类观赏一幅画时,虽然我们可以看到整幅画的全貌,但是在我们深入仔细地观察时,其实眼睛仅聚焦在很小的一块区域,这个时候人的大脑主要关注在这一小块图案上,因此人脑对整幅图的关注并不是均衡的,具有一定的权重区分。而注意力模型(Attention model)就是对人脑的注意力模型进行模拟,旨在从众多信息中选择出对当前任务更关键的信息。考虑到人原创 2018-10-23 11:25:13 · 4874 阅读 · 1 评论 -
【显著性目标检测】CVPR2018 显著性检测领域论文整理解读(Salient Object Detection)
前言:CVPR2018会议论文集已经公示(CVPR2018全部论文集链接),本文对显著性目标检测领域的6篇进行了整理,将这几篇论文的主体思想汇总起来,供大家一起学习。一、论文列表:1.《Flow Guided Recurrent Neural Encoder for Video Salient Object Detection》; 2.《A Bi-Directional Message ...原创 2018-07-04 17:02:57 · 18978 阅读 · 11 评论 -
显著性目标检测模型评价指标(一)——平均绝对误差:Mean Absolute Error(MAE)
显著性目标检测模型评价指标 之 平均绝对误差(MAE)原理与实现代码目录显著性目标检测模型评价指标 之 平均绝对误差(MAE)原理与实现代码目录一、显著性目标检测简介显著性目标(Salient Object):显著性目标检测(Salient Object Detection):评价指标(Evaluation Metrics):二、Mean Absolute Erro...原创 2018-03-14 16:08:36 · 49270 阅读 · 8 评论 -
显著性目标检测模型评价指标(二)——PR曲线
显著性目标检测模型评价指标 之 PR曲线原理与实现代码目录显著性目标检测模型评价指标 之 PR曲线原理与实现代码目录一、PR曲线原理计算方法阈值选取二、Matlab代码著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。参考文献一、PR曲线原理在显著目标提取中(关于视觉显著性的简要介绍点此处链接),PR曲线是用来评...原创 2018-03-19 22:19:42 · 20356 阅读 · 45 评论 -
显著性目标检测模型评价指标(三)——F-measure
显著性目标检测模型评价指标 之 F-measure原理与实现代码目录显著性目标检测模型评价指标 之 F-measure原理与实现代码目录一、F-measure原理三、 Matlab代码著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。参考文献一、F-measure原理上篇博客中,我们介绍了PR曲线,但是很多情况下,不管是查准率...原创 2018-03-19 23:03:03 · 22911 阅读 · 15 评论 -
【Tensorflow】Windows(64位)安装tensorflow
Windows(64位)安装tensorflow对于刚开始入门tensorflow的人,如果没有服务器资源,又不想在电脑上安装双系统,那么可以考虑一下直接在windows上安装tensorflow。但是,由于深度学习的特殊性,要在自己电脑上训练应该稍微复杂点的网络,时间与运算代价实在是太大了,windows上只是建议跑一下tensorflow社区的教学内容,学习入门。 半年前在电脑上安装过t...原创 2018-01-17 15:27:46 · 1803 阅读 · 0 评论 -
【Tensorflow】卷积神经网络(CNN)中Pooling层的种类介绍及函数使用
前言深度神经网络中,最主要的结构就是逐层交替出现的卷基层和pooling层(池化层),卷积层主要用来提取特征,而pooling层主要用来对卷积的结果进行降维,其实也就相当于对图像进行下采样。 卷积神经网络中,按照下采样的方法,pooling操作可以分为Max-pooling(基于最大值池化)、Average-pooling(均值池化)和Stochastic-pooling(随机池化)。在te...原创 2018-01-24 13:57:22 · 4391 阅读 · 0 评论