【论文阅读-姿态估计】Differentiable Hierarchical Graph Grouping for Multi-Person Pose Estimation

本文将介绍发表在ECCV 2020的一篇基于图模型的多人姿态估计方法,作者来自香港大学、商汤科技、南京大学和悉尼大学。
论文链接: https://arxiv.org/abs/2007.11864v1
代码链接: 尚未公开

主要思想:

现有的多人姿态估计模型一般分为一般分为两大类:top-down和bottom-up方法。Top-down的模型先对输入的图像进行目标检测,检测出图像中每个人的bounding box之后,通过单人姿态估计模型对每个人的姿态进行检测。而bottom-up的方法则是先通过关键点检测模型检测出图像中所有人的所有关键点,然后对其进行聚类分组等操作,将检测出的关键点与每个人对应起来。本文提出了一个基于图模型的bottom-up方法,即通过一个可训练的层级图结构(HGG,Hierarchical Graph Grouping)来对前一阶段检测到的关键点进行分组。在训练阶段,HGG部分与关键点检测部分是端到端一起训练的。

模型结构

主要框架图
如上图所示,本文的模型分为关键点提取(Keypoint Candidate Proposal)和基于图的关键点聚类(Hierarchical Graph Grouping
)两部分。其中关键点提取部分采用的是四组堆叠的沙漏网络结构,输出为关键点的Heatmap和点对关系特征图。而用于关键点分组的Hierarchical Graph Grouping部分就是本文的主要创新点,其主要结构如下图所示:
HGG结构
HGG部分主要由三部分组成:

  1. GNN用来学习Heatmaps中每个节点之间的边(Edge)连接;
  2. Edge Discriminator用来判断每个边的两个节点是否应该连接(输出0或1),两个点来自同一个人时输出1,来自不同人时输出0;
  3. Macro-Node Discriminator用来监督每次迭代的Group结果,当每个Group中所有节点都属于同一个人时输出1,否则输出0.

如下面伪代码所示,对关键点的Group是通过迭代进行的,每次迭代由四步操作构成:Graph feature aggregation, Edge proximity update, Node clustering, Graph pruning.
HGG伪代码

模型训练

损失函数:

模型的损失函数主要由三部分组成:

  1. Keypoint detection loss:监督训练Heatmap的生成;
  2. Pairwise pull/push loss:监督训练点对关系特征图的生成,将来自不同人的两个nodes关系尽可能远,同一个人的两个nodes关系尽可能近;
  3. BCE loss:监督训练两个判别器——Edge Discriminator和Macro-node Discriminator。
训练细节:

优化算法:Adam, lr=2e-4;
Input size:512512;
Output Size:128
128

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乐乐lelele

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值