caputo分数阶非线性常微分方程的初边值问题+Matlab代码

摘要:本文主要对一类caputo分数阶非线性的常微分方程的初边值问题进行数值模拟。参考文献《非线性分数阶常微分方程的一种显式算法》,然后通过matlab软件进行数值实验。

caputo分数阶非线性的常微分方程的初边值问题:

$$^C_0 D^{0.5}_t x(t)=-x(t)^3 $$ , \quad $$x(0)=1,t\in[0,100].

alpha=0.5;
c0=1;
ta=0;tb=100;
dt=0.05;
t=ta:dt:tb;
[t_ x_]=caputo_N(t,c0,alpha,dt);
plot(t_,x_,'o')



function [t,x]=caputo_N(t,c0,alpha,h)

    m=length(t);
    x(1)=c0;
    x(2)=c0+h^alpha*(-x(1)^3)/(alpha*gamma(alpha));
    
    for n=2:m-1 
        sum=0;
        for j=2:n
            sum=sum+((n+1-j)^alpha-(n-j)^alpha)*(3*(-x(j)^3)-(-x(j-1)^3));
        end
        x(n+1)=c0+h^alpha*(-x(1)^3)/(alpha*gamma(alpha))+sum*h^alpha/(2*alpha*gamma(alpha));
        
    end
end

 

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

落花随败笔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值