Python数据分析(一):NumPy

本文介绍了Python数据分析的基础——NumPy,讲解了数据的维度、NumPy的N维数组对象ndarray及其属性、操作,包括数组的创建、索引、切片、运算,以及NumPy在文件存取和函数应用上的功能。
摘要由CSDN通过智能技术生成

一、数据的维度

一个数据:表达一个含义,如:3.14
一组数据:表达一个或多个含义,如:3.14,3.134
维度:一组数据的组织形式

1、一维数据

一维数据由对等关系的有序或无序数据构成,采用线性方式组织。

3.1413,3.1398,3.1404,3.1401,3.1349,3.1376
对应列表、数组和集合等概念

2、列表和数组

一组数据的有序结构
区别:

  1. 列表:数据类型可以不同
  2. 数组:数组类型相同

3、二维数据

二维数据由多个一维数据构成,是一组数据的组合形式。
表格是典型的二维数据,其中,表头是二维数据的一部分。

4、多维数据

多维数据由一维或者二维数据在新维度上扩展形成。

5、高维数据

高维数据仅利用最基本的二元关系展示数据间的复杂结构。(键值对)

6、数据维度的Python表示

  1. 一维数据:列表和集合类型

[ 3.1398,3.1349,3.1376 ] 有序
{ 3.1398,3.1349,3.1376 } 无序

  1. 二维数据:列表类型
  2. 多维数据:列表类型

[ [ 3.1398,3.1349,3.1376 ] ,
[ 3.1398,3.1349,3.1376 ] ]

  1. 高维数据:字典类型或数据表示格式

dict = {
“firstName” : “Tian”,
“lastName” : “Song” ,
}

二、NumPy

NumPy是一个开源的Python科学计算基础库。

  1. 一个强大的N维数组对象ndarray
  2. 广播功能函数
  3. 整合C/C++/Fortran代码的工具
  4. 线性代数、傅里叶变换、随机数生成等功能

NumPy是SciPy、Pandas等数据处理或科学计算库的基础。

NumPy的引用

import numpy as np

三、N维数组对象:ndarray

例:计算A²+B³,其中,A和B是一维数组

import numpy as np
def npSum():
    a = np.array([0, 1, 2, 3, 4])
    b = np.array([9, 8, 7, 6, 5])
    c = a ** 2 + b ** 3
    return c
print(npSum())
  1. 数组对象可以去掉元素间运算所需的循环,使一维向量更像单个数据。
  2. 设置专门的数组对象,经过优化,可以提升这类应用的运算速度。
  3. 科学计算中,一个维度所有数据的类型往往相同。
  4. 数组对象采用相同的数据类型,有助于节省运算和存储空间。
  5. ndarray数组可以由非同质对象构成。
  6. 非同质ndarray元素为对象类型
  7. 非同质ndarray对象无法有效发挥NumPy优势,尽量避免使用

ndarray是一个多维数组对象,由两部分组成:

  1. 实际的数据
  2. 描述这些数据的元数据(数据维度、数据类型等)

ndarray数组一般要求所有元素类型相同(同质),数组下标从0开始。

1、ndarray实例

np.array()生成一个ndarray数组
np.array()输出成 [ ] 形式,元素由空格分割。
轴(axis):保存数据的维度
秩(rank):轴的数量

2、ndarray对象的属性

属性 说明
.ndim 秩,即轴的数量或维度数量
.shape ndarray对象的尺度,对于矩阵,n行m列
.size ndarray对象元素的个数,相当于.shape中n*m的值
.dtype ndarray对象的元素类型
.itemsize ndarray对象中每个元素的大小,以字节为单位
In:a = np.array([[0,1,2,3,4],[9,8,7,6,5]])

In:a.ndim
Out[3]: 2

In:a.shape
Out[4]: (2, 5)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sygALone

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值