numpy数据分析

这篇博客介绍了python数据分析中常用的库numpy,重点讲解了ndarray数组的特性,包括基本数据类型、自定义复合数据类型、数组的索引操作以及掩码应用。通过实例展示了如何进行矢量化运算、创建不同类型的数组,并探讨了numpy中数组维度的改变和数据共享。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python数据分析常用库

numpy基础

ndarry数组

1.ndarry数组支持矢量化运算

2.内存中ndarry对象包含两部分:元数据与实际数据

3.numpy提供多种创建数组方法

import numpy as np
ary = np.array([[1, 2, 3], [4, 5, 6]])
print(ary, type(ary))

ary2 = np.arange(0, 10, 2)  # 步长为2
print(ary2)

ary3 = np.ones(10)  # 构建一个全是1的
print(ary3)

ary4 = np.zeros(10, dtype='int32')
print(ary3)

ary5 = np.ones_like(ary)    # 构造一个结构与括号内相同的 但是用1填充
print(ary5)

ary6 = np.zeros_like(ary)
print(ary6)

# 构建几个相同的分数
ary7 = np.ones(5) / 5
print(ary7)

运行结果为:

ary:[[1 2 3]
         [4 5 6]] <class 'numpy.ndarray'>
ary2: [0 2 4 6 8]
ary3: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
ary4: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
ary5: [[1 1 1]
         [1 1 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值