python数据分析常用库

numpy基础
ndarry数组
1.ndarry数组支持矢量化运算
2.内存中ndarry对象包含两部分:元数据与实际数据
3.numpy提供多种创建数组方法
import numpy as np
ary = np.array([[1, 2, 3], [4, 5, 6]])
print(ary, type(ary))
ary2 = np.arange(0, 10, 2) # 步长为2
print(ary2)
ary3 = np.ones(10) # 构建一个全是1的
print(ary3)
ary4 = np.zeros(10, dtype='int32')
print(ary3)
ary5 = np.ones_like(ary) # 构造一个结构与括号内相同的 但是用1填充
print(ary5)
ary6 = np.zeros_like(ary)
print(ary6)
# 构建几个相同的分数
ary7 = np.ones(5) / 5
print(ary7)
运行结果为:
ary:[[1 2 3]
[4 5 6]] <class 'numpy.ndarray'>
ary2: [0 2 4 6 8]
ary3: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
ary4: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
ary5: [[1 1 1]
[1 1 1

这篇博客介绍了python数据分析中常用的库numpy,重点讲解了ndarray数组的特性,包括基本数据类型、自定义复合数据类型、数组的索引操作以及掩码应用。通过实例展示了如何进行矢量化运算、创建不同类型的数组,并探讨了numpy中数组维度的改变和数据共享。
最低0.47元/天 解锁文章

1264

被折叠的 条评论
为什么被折叠?



