数据结构
文章平均质量分 57
Su_coding
这个作者很懒,什么都没留下…
展开
-
数据结构——树的实现
在做树的遍历的时候发现自己对实现树的方法不太了解,也就是不知道怎么把一棵树的结构存到内存中,所以对树的实现找了一些资料,自己也研究了一下。首先,要想让计算机正确的保存你的“树”,你要用一种和你代码相匹配的输入方式,我用的是采用广义表表示的输入法,例如:A(B(D,E),C(F,G))。 这个式子可以分为以下几部分: A(B,C): A是这个结构的根节点,B,C是A的两个孩子。 A(B(D,原创 2017-04-16 13:44:37 · 571 阅读 · 0 评论 -
数据结构——树的遍历相关笔试题
一颗二叉树的先序遍历:ABDECFG;中序遍历:DBEAFCG;后序遍历:DEBFGCA。对于二叉树的遍历在之前的博客中有介绍: http://blog.csdn.net/Su_coding/article/details/701844191.根据先序和中序遍历写出后序遍历:思路: 根据先序遍历可知根节点为A; 根据中序遍历可知DBE为A的左子树,FCG为A的右子树; 递归实现,把DBE当作一颗新原创 2017-04-16 16:25:40 · 2426 阅读 · 0 评论 -
数据结构——树
树的定义在计算机科学中,树(tree)是一种抽象数据类型(ADT),用来模拟具有树状结构性质的数据集合。它是由n(n>=1)个有限节点组成的一个具有层状关系的集合。把它叫“树”是因为它看起来像一颗倒挂的树,也就是说它是根朝上而叶朝下的。树的相关术语 节点的度:一个节点含有的子树的个数称为该节点的度。 树的度:一棵树中,最大的节点的度称为树的度。 叶子结点:没有子节点的节点。 父节点:若一个节点含有子原创 2017-04-14 20:13:16 · 452 阅读 · 0 评论 -
数据结构——二叉查找树
二叉查找树 二叉查找树满足以下条件: 1.左子树上的所有节点值均小于根节点的值; 2.右子树上的所有节点值均大于根节点的值; 3.左右子树也满足上述来年改革条件。 二叉查找树的查找操作 这个操作需要返回指向树T中具有关键字X的节点的指针。若节点T中的关键字是X则返回T,若T中的关键字不是X,则对左子树或者右子树递归调用查找操作,若不存在这样的节点则返回NULL。 实现代码如下:原创 2017-04-16 22:04:13 · 423 阅读 · 0 评论 -
数据结构——树的遍历
二叉树的遍历1.深度优先遍历1.1先序遍历按照“根节点 - 左孩子 - 右孩子”的顺序进行访问 先序遍历的递归实现代码如下:void pre_traverse(BTree pTree) { if(PtRee) { printf("%c ",pTree->data); if(pTree->pLchild) pre_travers原创 2017-04-15 14:38:01 · 809 阅读 · 0 评论