leetcode 之 二分查找(java)(3)

5. 81. 搜索旋转排序数组 II

题目描述

已知存在一个按非降序排列的整数数组 nums ,数组中的值不必互不相同。

在传递给函数之前,nums 在预先未知的某个下标 k0 <= k < nums.length)上进行了 旋转 ,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]](下标 从 0 开始 计数)。例如, [0,1,2,4,4,4,5,6,6,7] 在下标 5 处经旋转后可能变为 [4,5,6,6,7,0,1,2,4,4]

给你 旋转后 的数组 nums 和一个整数 target ,请你编写一个函数来判断给定的目标值是否存在于数组中。如果 nums 中存在这个目标值 target ,则返回 true ,否则返回 false

你必须尽可能减少整个操作步骤。

示例 1:

输入:nums = [2,5,6,0,0,1,2], target = 0
输出:true

示例 2:

输入:nums = [2,5,6,0,0,1,2], target = 3
输出:false

提示:

  • 1 <= nums.length <= 5000
  • -104 <= nums[i] <= 104
  • 题目数据保证 nums 在预先未知的某个下标上进行了旋转
  • -104 <= target <= 104

思路

该题目与其上一道题目的区别是,该题目数组中有重复的数,因此,在判断的时候会有一些不同。

  • 例如,存在两端数都与mid处的数相同的情况。这种情况,我们只能将 l ++ , r –。因此,从代码中可以看出,该题目与上一个题目的不同之处就是,该题目添加了一个
  • if(nums[l] == nums[mid] && nums[mid] == nums[r]) {
    l ++;
    r --;
    } 的逻辑。
  • 同时,将判断有序数组的左右边界改成了 l 和 r。

代码

int l = 0, r = n - 1;
while(l <= r)
{
    int mid = (l + r) / 2;
    if(nums[mid] == target) return true;
    if(nums[l] == nums[mid] && nums[mid] == nums[r]) {
        l ++;
        r --;
    } else if(nums[l] <= nums[mid]) {
        if(nums[l] <= target && target < nums[mid]) r = mid - 1;
        else l = mid + 1;
    } else {
        if(nums[mid] < target && target <= nums[r]) l = mid + 1;
        else r = mid - 1;
    }
}

6. 378、有序矩阵中第k个小的元素

题目描述

给你一个 n x n 矩阵 matrix ,其中每行和每列元素均按升序排序,找到矩阵中第 k 小的元素。
请注意,它是 排序后 的第 k 小元素,而不是第 k不同 的元素。

你必须找到一个内存复杂度优于 O(n2) 的解决方案。

示例 1:

输入:matrix = [[1,5,9],[10,11,13],[12,13,15]], k = 8
输出:13
解释:矩阵中的元素为 [1,5,9,10,11,12,13,13,15],第 8 小元素是 13

示例 2:

输入:matrix = [[-5]], k = 1
输出:-5

提示:

  • n == matrix.length
  • n == matrix[i].length
  • 1 <= n <= 300
  • -109 <= matrix[i][j] <= 109
  • 题目数据 保证 matrix 中的所有行和列都按 非递减顺序 排列
  • 1 <= k <= n2

题解

题目中说到,每行和每列元素均按升序排序,

  • 说明矩阵有一个性质,就是从左上到右下数组中的数值依次递减。
  • 我们遍历的时候,取左上最小值,右下最大值,然后,结果肯定在这两个的范围内。
  • 同时每次check()时,从左下开始遍历,因为从对角线分割,左下往右上遍历,每次统计每列小于mid的行数,统计完总数,再返回判断结果。
  • 如果总数大于等于k,那么说明mid大了,r = mid
  • 如果总数小于k,那么说明mid小了,l = mid + 1

代码

public int kthSmallest(int[][] matrix, int k) {
    int n = matrix.length;
    int l = matrix[0][0], r = matrix[n - 1][n - 1];

    while(l < r) {
        int mid = l + (r - l) / 2;
        if(check(matrix, mid, k, n)) {
            r = mid;
        } else {
            l = mid + 1;
        }
    }
    return l;
}

public boolean check(int[][] matrix, int mid, int k, int n) {
    int i = n - 1, j = 0;
    int num = 0;
    while(i >= 0 && j < n)
    {
        if(matrix[i][j] <= mid) {
            num += i + 1;
            j ++;
        } else {
            i --;
        }
    }
    return num >= k;
}

加粗样式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值