互联网协议入门 作者: 阮一峰

一、概述 1.1 五层模型 互联网的实现,分成好几层。每一层都有自己的功能,就像建筑物一样,每一层都靠下一层支持。 用户接触到的,只是最上面的一层,根本没有感觉到下面的层。要理解互联网,必须从最下层开始,自下而上理解每一层的功能。 如何分层有不同的模型,有的模型分七层,有的分四层。我觉得,...

2018-11-30 10:08:06

阅读数 89

评论数 0

S-函数

S-函数使Simulink的功能大大扩充,除Mmatlab外,用户还可以用其他语言(C/C++/FORTRAN/Ada)编写实现算法,很强大的同时也对使用者提出了较高的要求。下面是编写S-函数的整个流程:0 基础知识(1)Simulink仿真过程Simulnk仿真分为两步:初始化、仿真循环。仿真是...

2018-06-02 11:10:43

阅读数 1082

评论数 0

Signal Builder模块

双击Signal Builder模块弹出如下对话框:在桌面上建立名为”text.xlsx“的Excel测试文件,文件内容如下:选择file-import data from file,弹出下面的Import File对话框:进行简单的选择和配置,右边显示如下导入成功时,点ok:就会出现下面自定义信...

2018-04-09 19:20:13

阅读数 2951

评论数 1

matlab中S函数的概念及使用

S函数即系统函数System Function的意思,为什么要使用S函数呢?是因为在研究中,有时需要用到复杂的算法设计等,而这些算法因为其复杂性不适合用普通的Simulink模块来搭建,即matlab所提供的Simulink模块不能满足用户的需求,需要用编程的形式设计出S函数模块,将其嵌入到系...

2018-04-08 21:03:31

阅读数 9502

评论数 1

基于Simulink的Ziegler-Nichols PID参数经验整定法

Ziegler-Nichols整定法适用对象为带纯延迟的一阶惯性环节,即G(s)=K*e^(-τs)/(Ts+1) 其中,K为比例系数;T为惯性时间常数;τ为纯延迟时间常数。 当被控对象的单位阶跃响应曲线看起来近似一条S形曲线时,可用Ziegler-Nichols经验整定公式。 ...

2018-01-12 16:18:59

阅读数 1656

评论数 0

PID控制最通俗的解释

[ 2010/6/18 15:15:45 | Author: 廖老师 ]    PID是比例、积分、微分的简称,PID控制的难点不是编程,而是控制器的参数整定。参数整定的关键是正确地理解各参数的物理意义,PID控制的原理可以用人对炉温的手动控制来理解。阅读本文不需要高深的数学知识。   1.比例控...

2018-01-05 11:10:24

阅读数 1134

评论数 0

尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT) Just For Fun

1、SIFT综述 尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 David Lowe在1999年所发表,2004年完善...

2018-01-02 22:13:21

阅读数 120

评论数 0

LSD(Line Segment Detector) 直线段检测算法

LSD的核心是像素合并于误差控制。利用合并像素来检测直线段并不是什么新鲜的方法,但是合并像素的方法通常运算量较大。LSD号称是能在线性时间(linear-time)内得到亚像素级准确度的直线段检测算法。LSD虽然号称不需人工设置任何参数,但是实际使用时,可以设置采样率和判断俩像素是否合并的方向差。...

2017-12-10 22:01:35

阅读数 707

评论数 0

幂级数 收敛半径

设    是定义在某区间I上的函数列,则表达式   (1) 称为定义在区间I上函数项级数。 如果式(1)上的各项    都是定义在区间    上的幂函数,函数项级数    (2) 称作幂级数,其中    为常数,    称为幂级数的系数。 ...

2017-12-09 16:46:27

阅读数 6703

评论数 1

均值、方差、标准差、协方差、协方差矩阵

一、统计学的基本概念 统计学里最基本的概念就是样本的均值、方差、标准差。首先,我们给定一个含有n个样本的集合,下面给出这些概念的公式描述: 均值: 标准差: 方差: 均值描述的是样本集合的中间点,它告诉我们的信息是有限的,而标准差给我们描述的是样本集合的各个样本点到均...

2017-12-09 11:34:08

阅读数 247

评论数 0

高斯函数以及在图像处理中的应用总结

高斯函数以及在图像处理中的应用总结 1、一维高斯函数: a表示得到曲线的高度,b是指曲线在x轴的中心,c指width(与半峰全宽有关),图形如下: 2、根据一维高斯函数,可以推导得到二维高斯函数:   在图形上,正态分布是一种钟...

2017-12-08 22:05:19

阅读数 91

评论数 0

Harris 角点检测

关于角点的应用在图像处理上比较广泛,如图像匹配(FPM特征点匹配)、相机标定等。网上也有很多博客对Harris角点检测原理进行描述,但基本上只是描述了算法流程,而其中相关细节并未作出解释,这里我想对有些地方做出补充说明,正所谓知其然知其所以然,如有不对,还望指正。 1. 何为角点? 下...

2017-12-08 21:20:08

阅读数 246

评论数 0

matlab 提取HOG特征

HOG(Histogram of Oriented Gradient)方向梯度直方图,主要用来提取图像特征,最常用的是结合svm进行行人检测。 算法流程图如下(这篇论文上的): 下面我再结合自己的程序,表述一遍吧: 1.对原图像gamma校正,img=sqrt(img);...

2017-11-20 16:32:46

阅读数 617

评论数 0

K-means聚类算法

K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般。最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用。看了Andrew Ng的这个讲义后才有些明白K-means后面包含的EM思想。      聚类属于无监督学习,以往的回归、朴素贝叶斯、SVM...

2017-11-19 21:41:03

阅读数 74

评论数 0

RGB图像中特定颜色的提取

一、理论基础        在电脑中,RGB的所谓“多少”就是指亮度,并使用整数来表示。通常情况下,RGB各有256级亮度,用数字表示为从0、1、2...直到255。注意虽然数字最高是255,但0也是数值之一,因此共256级。如同2000年到2010年共是11年一样。 按照计算,256级的RGB色...

2017-11-16 10:16:26

阅读数 12318

评论数 3

基于MATLAB图像预处理——图像增强

图像增强中两类重要的处理方法:一种是灰度变换,另一种是直方图处理。        一、灰度变换   灰度变换通常可分为线性变换、分段线性变换和非线性变换。我们将分别给出实验,来查看其处理效果。       1、线性变换 例1:我们对一张较暗的图片进行简单的加法,提高他的亮度...

2017-11-15 20:25:00

阅读数 8415

评论数 3

SVM算法 理论

机器学习的大致分类: 1)分类(模式识别):要求系统依据已知的分类知识对输入的未知模式(该模式的描述)作分析,以确定输入模式的类属,例如手写识别(识别是不是这个数)。 2)问题求解:要求对于给定的目标状态,寻找一个将当前状态转换为目标状态的动作序列。 SVM一般是用来分类的(一般...

2017-11-15 19:18:09

阅读数 132

评论数 0

数字图像的梯度概念(the gradient of the image)

在理解HOG算法之前,必须先要理解梯度这一概念   数学中梯度的概念  对于函数 z = f(x,y)在平面区域D内具有一阶连续偏导数,则对于每一个属于D点P(x,y),都可定出一个向量                                                      ...

2017-11-15 18:38:36

阅读数 1445

评论数 0

【特征检测】HOG特征算法

简介         HOG(Histogram of Oriented Gridients的简写)特征检测算法,最早是由法国研究员Dalal等在CVPR-2005上提出来的,一种解决人体目标检测的图像描述子,是一种用于表征图像局部梯度方向和梯度强度分布特性的描述符。其主要思想是:在边缘...

2017-11-15 16:29:46

阅读数 236

评论数 0

一文读懂卷积神经网络CNN

转自:http://dataunion.org/11692.html   作者:张雨石 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet、cuda-convn...

2017-11-13 16:48:16

阅读数 71

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭