su_yuheng
码龄7年
关注
提问 私信
  • 博客:263,488
    263,488
    总访问量
  • 3
    原创
  • 534,991
    排名
  • 153
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2017-10-22
博客简介:

su_yuheng的博客

查看详细资料
个人成就
  • 获得184次点赞
  • 内容获得31次评论
  • 获得1,095次收藏
创作历程
  • 1篇
    2019年
  • 7篇
    2018年
  • 19篇
    2017年
成就勋章
TA的专栏
  • svm libsvm
    2篇
  • 图像识别,匹配方法
    2篇
  • 深度学习 cnn
    3篇
  • 梯度
  • 图像梯度 梯度图像
  • 图像预处理
    1篇
  • 图像预处理 yanse分割
  • 图像预处理 颜色分割
    1篇
  • 图像预处理 颜色分割 聚类 K-means聚类算法
    1篇
  • HOG特征提取 matlab
  • 图像处理 角点
    1篇
  • 高斯函数
    1篇
  • 数学基础 协方差矩阵
    1篇
  • 直线段检测算法
    1篇
  • sift 特征
    1篇
  • PID算法
    1篇
  • PID 整定方法
    1篇
  • s 函数
    2篇
  • simulink
    1篇
兴趣领域 设置
  • 编程语言
    python
  • 人工智能
    深度学习
  • 音视频
    opencv计算机视觉
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

CAN 总线知识

工作原理当 CAN 总线上的一个节点(站)发送数据时,它以报文的形式广播给网络中所有节点,对每个节点来说,无论数据是否是发给自己的,都对其接收。每组报文开头的11 位字符为标识符,定义了报文的优先级,这种报文格式成为面向内容的编制方案。同一系统中标识符是唯一的,不可能有两个站发送具有相同标识符的报文,当几个站同时竞争总线读取时,这种配置十分重要。大体的工作原理我们搞清了,但是根本的协议...
原创
发布博客 2019.08.29 ·
2678 阅读 ·
0 点赞 ·
0 评论 ·
10 收藏

互联网协议入门 作者: 阮一峰

一、概述1.1 五层模型互联网的实现,分成好几层。每一层都有自己的功能,就像建筑物一样,每一层都靠下一层支持。用户接触到的,只是最上面的一层,根本没有感觉到下面的层。要理解互联网,必须从最下层开始,自下而上理解每一层的功能。如何分层有不同的模型,有的模型分七层,有的分四层。我觉得,把互联网分成五层,比较容易解释。如上图所示,最底下的一层叫做”实体层”(Physical Laye...
转载
发布博客 2018.11.30 ·
501 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

S-函数

S-函数使Simulink的功能大大扩充,除Mmatlab外,用户还可以用其他语言(C/C++/FORTRAN/Ada)编写实现算法,很强大的同时也对使用者提出了较高的要求。下面是编写S-函数的整个流程:0 基础知识(1)Simulink仿真过程Simulnk仿真分为两步:初始化、仿真循环。仿真是由求解器控制的,求解器主要作用是:计算模块输出、更新模块离散状态、计算连续状态。求解器传递给系统的信息...
转载
发布博客 2018.06.02 ·
11277 阅读 ·
24 点赞 ·
4 评论 ·
108 收藏

Signal Builder模块

双击Signal Builder模块弹出如下对话框:在桌面上建立名为”text.xlsx“的Excel测试文件,文件内容如下:选择file-import data from file,弹出下面的Import File对话框:进行简单的选择和配置,右边显示如下导入成功时,点ok:就会出现下面自定义信号了:当然,我们可以在上面信号基础上进行修改坐标以得到其他的信号,这里就不啰嗦了。----------...
转载
发布博客 2018.04.09 ·
11795 阅读 ·
2 点赞 ·
1 评论 ·
19 收藏

matlab中S函数的概念及使用

S函数即系统函数System Function的意思,为什么要使用S函数呢?是因为在研究中,有时需要用到复杂的算法设计等,而这些算法因为其复杂性不适合用普通的Simulink模块来搭建,即matlab所提供的Simulink模块不能满足用户的需求,需要用编程的形式设计出S函数模块,将其嵌入到系统中。如果恰当地使用S函数,理论上,可以在Simulink下对任意复杂的系统进行仿真。
转载
发布博客 2018.04.08 ·
80752 阅读 ·
53 点赞 ·
8 评论 ·
342 收藏

基于Simulink的Ziegler-Nichols PID参数经验整定法

Ziegler-Nichols整定法适用对象为带纯延迟的一阶惯性环节,即G(s)=K*e^(-τs)/(Ts+1)其中,K为比例系数;T为惯性时间常数;τ为纯延迟时间常数。当被控对象的单位阶跃响应曲线看起来近似一条S形曲线时,可用Ziegler-Nichols经验整定公式。下图(1)为被控对象的阶跃响应曲线中比例系数、惯性常数、纯延迟时间常数          
转载
发布博客 2018.01.12 ·
9502 阅读 ·
2 点赞 ·
1 评论 ·
29 收藏

PID控制最通俗的解释

[ 2010/6/18 15:15:45 | Author: 廖老师 ]    PID是比例、积分、微分的简称,PID控制的难点不是编程,而是控制器的参数整定。参数整定的关键是正确地理解各参数的物理意义,PID控制的原理可以用人对炉温的手动控制来理解。阅读本文不需要高深的数学知识。   1.比例控制   有经验的操作人员手动控制电加热炉的炉温,可以获得非常好的控制品质,PID控制与人工控制的控制策
转载
发布博客 2018.01.05 ·
12013 阅读 ·
5 点赞 ·
0 评论 ·
28 收藏

尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT) Just For Fun

1、SIFT综述尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 David Lowe在1999年所发表,2004年完善总结。其应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪
转载
发布博客 2018.01.02 ·
849 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

LSD(Line Segment Detector) 直线段检测算法

LSD的核心是像素合并于误差控制。利用合并像素来检测直线段并不是什么新鲜的方法,但是合并像素的方法通常运算量较大。LSD号称是能在线性时间(linear-time)内得到亚像素级准确度的直线段检测算法。LSD虽然号称不需人工设置任何参数,但是实际使用时,可以设置采样率和判断俩像素是否合并的方向差。我们知道,检测图像中的直线其实就是寻找图像中梯度变化较大的像素。因此,梯度和图像的level-line
转载
发布博客 2017.12.10 ·
8317 阅读 ·
6 点赞 ·
0 评论 ·
28 收藏

幂级数 收敛半径

设  是定义在某区间I上的函数列,则表达式 (1)称为定义在区间I上函数项级数。如果式(1)上的各项  都是定义在区间  上的幂函数,函数项级数  (2)称作幂级数,其中  为常数,  称为幂级数的系数。幂级数收敛半径的求法  关于幂级数收敛半径的求法,我们有下面的定
转载
发布博客 2017.12.09 ·
27555 阅读 ·
1 点赞 ·
4 评论 ·
7 收藏

均值、方差、标准差、协方差、协方差矩阵

一、统计学的基本概念统计学里最基本的概念就是样本的均值、方差、标准差。首先,我们给定一个含有n个样本的集合,下面给出这些概念的公式描述:均值:标准差:方差:均值描述的是样本集合的中间点,它告诉我们的信息是有限的,而标准差给我们描述的是样本集合的各个样本点到均值的距离之平均。以这两个集合为例,[0, 8, 12, 20]和[8, 9, 11, 12],
转载
发布博客 2017.12.09 ·
999 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

高斯函数以及在图像处理中的应用总结

高斯函数以及在图像处理中的应用总结1、一维高斯函数:a表示得到曲线的高度,b是指曲线在x轴的中心,c指width(与半峰全宽有关),图形如下:2、根据一维高斯函数,可以推导得到二维高斯函数: 在图形上,正态分布是一种钟形曲线,越接近中心,取值越大,越远离中心,取值越小。计算平均值的时候,我们只需要将"中心点"作为原
转载
发布博客 2017.12.08 ·
1299 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Harris 角点检测

关于角点的应用在图像处理上比较广泛,如图像匹配(FPM特征点匹配)、相机标定等。网上也有很多博客对Harris角点检测原理进行描述,但基本上只是描述了算法流程,而其中相关细节并未作出解释,这里我想对有些地方做出补充说明,正所谓知其然知其所以然,如有不对,还望指正。1. 何为角点?下面有两幅不同视角的图像,通过找出对应的角点进行匹配。再看下图所示,放大图像
转载
发布博客 2017.12.08 ·
584 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

matlab 提取HOG特征

HOG(Histogram of Oriented Gradient)方向梯度直方图,主要用来提取图像特征,最常用的是结合svm进行行人检测。算法流程图如下(这篇论文上的):下面我再结合自己的程序,表述一遍吧:1.对原图像gamma校正,img=sqrt(img);2.求图像竖直边缘,水平边缘,边缘强度,边缘斜率。3.将图像每16*16(取其他也可以
转载
发布博客 2017.11.20 ·
5336 阅读 ·
5 点赞 ·
2 评论 ·
44 收藏

K-means聚类算法

K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般。最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用。看了Andrew Ng的这个讲义后才有些明白K-means后面包含的EM思想。     聚类属于无监督学习,以往的回归、朴素贝叶斯、SVM等都是有类别标签y的,也就是说样例中已经给出了样例的分类。而聚类的样本中却没有给定y,只有特征x,比如
转载
发布博客 2017.11.19 ·
1692 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

RGB图像中特定颜色的提取

一、理论基础       在电脑中,RGB的所谓“多少”就是指亮度,并使用整数来表示。通常情况下,RGB各有256级亮度,用数字表示为从0、1、2...直到255。注意虽然数字最高是255,但0也是数值之一,因此共256级。如同2000年到2010年共是11年一样。按照计算,256级的RGB色彩总共能组合出约1678万种色彩,即256×256×256=16777216。通常也被简称为160
原创
发布博客 2017.11.16 ·
38208 阅读 ·
42 点赞 ·
5 评论 ·
300 收藏

基于MATLAB图像预处理——图像增强

图像增强中两类重要的处理方法:一种是灰度变换,另一种是直方图处理。       一、灰度变换  灰度变换通常可分为线性变换、分段线性变换和非线性变换。我们将分别给出实验,来查看其处理效果。      1、线性变换例1:我们对一张较暗的图片进行简单的加法,提高他的亮度,从而可以看到隐藏在黑暗中的细节。代码:I=imread('F:\My_documen
转载
发布博客 2017.11.15 ·
27729 阅读 ·
26 点赞 ·
3 评论 ·
250 收藏

SVM算法 理论

机器学习的大致分类:1)分类(模式识别):要求系统依据已知的分类知识对输入的未知模式(该模式的描述)作分析,以确定输入模式的类属,例如手写识别(识别是不是这个数)。2)问题求解:要求对于给定的目标状态,寻找一个将当前状态转换为目标状态的动作序列。SVM一般是用来分类的(一般先分为两类,再向多类推广一生二,二生三,三生万物哈)                     
转载
发布博客 2017.11.15 ·
397 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

数字图像的梯度概念(the gradient of the image)

在理解HOG算法之前,必须先要理解梯度这一概念  数学中梯度的概念 对于函数 z = f(x,y)在平面区域D内具有一阶连续偏导数,则对于每一个属于D点P(x,y),都可定出一个向量                                                                         这个向量称为函数 z
原创
发布博客 2017.11.15 ·
9490 阅读 ·
8 点赞 ·
0 评论 ·
40 收藏

【特征检测】HOG特征算法

简介        HOG(Histogram of Oriented Gridients的简写)特征检测算法,最早是由法国研究员Dalal等在CVPR-2005上提出来的,一种解决人体目标检测的图像描述子,是一种用于表征图像局部梯度方向和梯度强度分布特性的描述符。其主要思想是:在边缘具体位置未知的情况下,边缘方向的分布也可以很好的表示行人目标的外形轮廓。        Dal
转载
发布博客 2017.11.15 ·
608 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏
加载更多