设
是定义在某区间I上的
函数列,则表达式


称为定义在区间I上函数项级数。
称作
幂级数
,其中
为常数,
称为幂级数的系数。


幂级数收敛半径的求法
关于幂级数收敛半径的求法,我们有下面的定理.
定理1 设幂级数的所有系数,如果,则
当时,这幂级数的收敛半径;
当时,这幂级数的收敛半径;
当时,这幂级数的收敛半径.
证明 对绝对值级数应用比值判别法,有
.
若存在,则
当时,题设级数绝对收敛;
当时,级数发散,且当充分大时有,故一般项不趋于零,级数发散. 即收敛半径;
若,则对任何,有
,
故级数收敛,从而题设级数绝对收敛,即收敛半径;
若,则对任何非零的,有. 所以幂级数发散. 于是.
注:根据幂级数的系数的形式,有时,我们也可用根值判别法来求收敛半径,此时,有.
在定理中,我们假设所给幂级数的所有系数,这样幂级数的各项是依幂次连续的. 如果幂级数有缺项,如缺少奇数次幂的项等,则应直接利用比值判别法或根值判别法来判断幂级数的收敛性.