python
文章平均质量分 73
勤劳的凌菲
Try my best! Do myself~~
展开
-
TensorFlow之windows离线安装
说明:TensorFlow windows的在线安装请参看博文: TensorFlow-1 入门 由于笔记本的性能比较差,在跑两层CNN+softmax进行数字识别时,笔记本就处在了卡死状态,痛定思痛,本博主就决定在我的高大上的电脑(学校电脑不让联网,泪奔。。。。)上装python,pycharm,和TensorFlow。 查网上文章,木有找到离线安装TensorFlow的,因原创 2017-08-02 09:56:01 · 13374 阅读 · 4 评论 -
python数据类型详解
转自:http://www.cnblogs.com/linjiqin/p/3608541.html目录1、字符串2、布尔类型3、整数4、浮点数5、数字6、列表7、元组8、字典9、日期1、字符串1.1、如何在Python中使用字符串a、使用单引号(')用单引号括起来表示字符串,例如:str='this is string';转载 2017-10-23 14:35:58 · 296 阅读 · 0 评论 -
机器学习中的数据预处理中的标准化(sklearn preprocessing)
转自:http://blog.csdn.net/csmqq/article/details/51461696Standardization即标准化,尽量将数据转化为均值为零,方差为一的数据,形如标准正态分布(高斯分布)。实际中我们会忽略数据的分布情况,仅仅是通过改变均值来集中数据,然后将非连续特征除以他们的标准差。sklearn中 scale函数提供了简单快速的singlearray-like转载 2017-10-18 14:52:36 · 1455 阅读 · 0 评论 -
python中lambda的使用
在学习python的过程中,lambda的语法时常会使人感到困惑,lambda是什么,为什么要使用lambda,是不是必须使用lambda? 下面就上面的问题进行一下解答。 1、lambda是什么? 看个例子: 1 g = lambda x:x+1 看一下执行的结果: g(1) >>>2 g(2)转载 2017-08-28 16:57:49 · 415 阅读 · 0 评论 -
TensorFlow-6实现进阶的卷积神经网络
1 数据cifar-10数据,该数据集包含60000张32X32的彩色图像,其中训练集50000张,测试集10000张。标注为10类,每一类6000张图片,这10类分别是airplane、automobile bird cat deer dog frog horse ship truck,其中没有任何重叠的情况。数据可从 https://github.com/tensorflow/mo原创 2017-08-23 10:23:52 · 394 阅读 · 0 评论 -
TensorFlow-7实现AlexNet
1 AlexNet网络结构请参看:http://www.cnblogs.com/gongxijun/p/6027747.htmlAlexNet网络的新技术点:1)成功使用ReLU作为CNN的激活函数,成功解决了Sigmoid函数在网络较深时的梯度弥散问题。2)训练时使用Dropout随机忽略一部分神经元,以避免过拟合。3)在CNN中使用重叠的最大池化,避免平均池化的模糊效果,并原创 2017-08-24 22:21:08 · 420 阅读 · 0 评论 -
TensorFlow之3 实现自编码器
1 自编码器原理自编码器(AutoEncoder)即可以使用自身的高阶特征编码自己。自编码器其实是一种神经网络,它的输入和输出是一致的,它借助稀疏编码的思想,目标是使用稀疏的一些高阶特征重新组合来重构自己。因此,它的特征比较明显:1.期望输入输出一致;2.希望使用高阶特征来重构自己。当给数据加入噪声时,那就是Denoising AutoEncoder(去噪自编码器),我们将从噪声中学习原创 2017-08-14 21:25:57 · 958 阅读 · 0 评论 -
TensorFlow插曲之 tf.app.run()
学习TensorFlow程序代码时,很多时候可以看到tf.app.run(),下面讲一下该函数的作用和用法。1 函数原型run(main=None, argv=None) Runs the program with an optional 'main' function and 'argv' list.2 作用 通常用此函数解析命令行后,运行main函数3原创 2017-07-28 16:35:48 · 6390 阅读 · 6 评论 -
python命令行解析模块argparse
说明:本文的知识内容转自http://blog.csdn.net/mameng1/article/details/54409910如若侵权,请联系博主删除。在学习TensorFlow模块时,程序中遇到命令行解析模块的argparse部分程序,利用python help()之后也没太弄明白其作用及用法,当看到mameng1博主关于这部分的内容时,觉得清晰明了,为加深自己的印象,为此块的学习留转载 2017-07-28 16:08:42 · 462 阅读 · 0 评论 -
TensorFlow-5实现简单的卷积神经网络CNN
1 卷积神经网络原理CNN的原理部分请参看:http://blog.csdn.net/yunpiao123456/article/details/52437794 讲得非常详细。2 网络架构数据:Mnist手写数字网络构造:两层卷积,两层池化,1层全连接层,最后softmax分类分类 卷积1层:核5X5,stride=1,32个filters, pa原创 2017-08-16 21:08:05 · 468 阅读 · 0 评论 -
TensorFlow-4 实现多层感知机
1 TensorFlow搭建网络的步骤(1)定义公式,也就是forward时的计算;(2)定义loss,选定优化器,并指定优化器优化loss(3)迭代地对数据进行训练;(4)在测试集上或验证集上对准确率进行评测。2 设置数据:Mnist数据网络:1个隐含层,隐含层节点数300(200--1000范围内的结果差别不大)。 W1的初始化参数为截断的正太分布,其标准原创 2017-08-15 20:01:12 · 635 阅读 · 0 评论 -
tf.nn.conv2d函数讲解
因为又要用到conv2d函数,决定把每个参数都弄明白。转自:http://blog.csdn.net/mao_xiao_feng/article/details/53444333tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要tf.nn.conv2d(inpu转载 2017-08-16 17:02:50 · 1502 阅读 · 0 评论 -
TensorFlow-3 CNN数字识别
1 理论卷积神经网络(CNN)的理论内容请参考:卷积神经网络概念与原理 2 CNN网络结构利用CNN进行MNist数字识别,两层卷积层,两层池化层1层卷积层:Size(5,5),Stride(1), 32feature Map 激活函数为RELU1层池化层:Size(2,2),最大池化2层卷积层:Size(5,5),Stride(1), 64feature原创 2017-08-02 15:27:58 · 466 阅读 · 0 评论 -
TensorFlow-2 数字识别
步骤准备: 1 数据准备:可以直接从'/tmp/tensorflow/mnist/input_data'中获取 2 创建模型:x W b 3 定义损失函数和优化形式(采用softmax分类器) 4 启动会话(Session) 5 训练模型 6 测试并计算输出 其中softmax分类器的原理请参考:Softmax回归程序:#TensorFlow手原创 2017-07-28 18:33:43 · 563 阅读 · 0 评论 -
Tencent_AILab_ChineseEmbedding.txt使用
正在做问答系统,看到腾讯正式开源一个大规模、高质量的中文词向量数据集Tencent_AILab_ChineseEmbedding.txt,简直喜极而泣。下载地址:https://ai.tencent.com/ailab/nlp/embedding.html ,里边有对数据集的介绍还有论文的下载地址。迅速写了一个代码,用在我自己的问答系统中,效果嘛还在训练,初始几步的loss确实比之前随机初始化下...原创 2018-10-19 16:21:20 · 7662 阅读 · 10 评论