移植MATLAB神经网络算法到MFC平台

该算法需利用高斯随机分布来制造预测,因此另封装一个randn()函数制造伪高斯随机数,然后在Forecast()函数中对样本进行网络训练,并利用训练结果进行网络预测,

#gauss.h/
#define pi 3.1415926535897
#define rd (rand()/(RAND_MAX+1.0))
double randn(int type)
{
    srand((unsigned)time(NULL));
    //按照12个均匀分布之和减去6得到正态分布函数的x值
    if (type==1)
        return rd+rd+rd+rd+rd+rd+rd+rd+rd+rd+rd+rd-6.0;
    //按照计算公式y=sqrt(-2*ln(U))*cos(2*PI*V)计算得到x
    else if(type==2)
        return sqrt(-2*log(rand()/(RAND_MAX+1.0)))*cos(2*pi*rand()/(RAND_MAX+1.0));
    else
        return randn(0.0,1.0,-10.0,10.0);
}
///


//预测算法///
        vector< vector< double > > Input;训练输入样本
        vector< vector< double > > Output;//训练输出样本
        vector< vector< double > > PreInput;预测输入样本
        vector< vector< double > > PreOutput; ///预测输出结果
        int input_col;//定义训练输入样本列,数据计算以列为单位,与MATLAB中列向量同意义
        int input_row;//定义训练输入样本行
        int inputtest_row;//定义训练输出样本行
	int output_col;//定义预测输入样本列,即需要预测的数据,1列
	int output_row;//定义预测输入样本行
 	int outputtest_row;//定义预测输出样本行,1列
 	int maxgen; //迭代次数
	int n; //隐形节点个数	
 	double Input[20][1];
///以下为个训练向量与预测向量结构初始化,预测时需进行数据有效化填充 
        int i=0; 
        Input.resize(input_row);
	for(i=0;i<input_row;i++)
	{
		Input[i].resize(input_col);
	}
	Output.resize(inputtest_row);
	for(i=0;i<inputtest_row;i++)
	{
		Output[i].resize(input_col);
	}
 	PreInput.resize(output_row);
	for(i=0;i<output_row;i++)
	{
		PreInput[i].resize(output_col);
	}
	PreOutput.resize(outputtest_row);
	for(i=0;i<outputtest_row;i++)
	{
		PreOutput[i].resize(output_col);
	}
/
/本人为动态改变预测体,采用vector向量结构计算,可随时改变数组结构///
/vector的使用需添加标准库头文件<vertor>,并定义命名空间,using namespace std;///
///规避double数组只能静态定义的特性///
///调试中发现double二维及以上常规数组无法进行指针与数组名之间的转化/
/具体错误cannot convert double** to double[][] 
void Forecast()
{
	int M=input_col;%输入节点个数
	int N=output_col;%输出节点个数
	double lr1=0.01; //%学习概率
	double lr2=0.001; //%学习概率
	int i,j,k,kk,kkk;
	srand((unsigned)time( NULL ));
	double value=0.0;
	CString str = _T("");
	vector< vector< double > > Wjk(n);
	for(i=0;i<n;i++)
	{
		Wjk[i].resize(input_col);
	}
	vector< vector< double > > Wjk_1(n);
	for(i=0;i<n;i++)
	{
		Wjk_1[i].resize(input_col);
	}
	vector< vector< double > > Wjk_2(n);
	for(i=0;i<n;i++)
	{
		Wjk_2[i].resize(input_col);
	}

	for(i = 0;i <n;i++)
	{
		for(j = 0;j < input_col;j++)
		{
			Wjk[i][j] = randn(2);
			Wjk_1[i][j] = Wjk[i][j];
			Wjk_2[i][j] = Wjk_1[i][j];
		}
	}
	vector< vector< double > > Wij(output_col);
	for(i=0;i<output_col;i++)
	{
		Wij[i].resize(n);
	}
	vector< vector< double > > Wij_1(output_col);
	for(i=0;i<output_col;i++)
	{
		Wij_1[i].resize(n);
	}
	vector< vector< double > > Wij_2(output_col);
	for(i=0;i<output_col;i++)
	{
		Wij_2[i].resize(n);
	}


	for(i = 0;i <output_col;i++)
	{
		for(j = 0;j < n;j++)
		{
			Wij[i][j] = randn(2);
			Wij_1[i][j] = Wij[i][j];
			Wij_2[i][j] = Wij_1[i][j];
		}
	}
	
	vector< vector< double > > a(1);
	for(i=0;i<1;i++)
	{
		a[i].resize(n);
	}
	vector< vector< double > > a_1(1);
	for(i=0;i<1;i++)
	{
		a_1[i].resize(n);
	}
	vector< vector< double > > a_2(1);
	for(i=0;i<1;i++)
	{
		a_2[i].resize(n);
	}

	for(i = 0;i <1;i++)
	{
		for(j = 0;j < n;j++)
		{
			a[i][j] = randn(2);
			a_1[i][j] = a[i][j];
			a_2[i][j] = a_1[i][j];
		}
	}
	
	vector< vector< double > > b(1);
	for(i=0;i<1;i++)
	{
		b[i].resize(n);
	}
	vector< vector< double > > b_1(1);
	for(i=0;i<1;i++)
	{
		b_1[i].resize(n);
	}
	vector< vector< double > > b_2(1);
	for(i=0;i<1;i++)
	{
		b_2[i].resize(n);
	}
	for(i = 0;i <1;i++)
	{
		for(j = 0;j < n;j++)
		{
			b[i][j] = randn(2);
			b_1[i][j] = b[i][j];
			b_2[i][j] = b_1[i][j];
		}
	}	
	vector< vector< double > > y(1);
	for(i=0;i<1;i++)
	{
		y[i].resize(output_col);
	}
	vector< vector< double > > net(1);
	for(i=0;i<1;i++)
	{
		net[i].resize(n);
	}
	vector< vector< double > > net_ab(1);
	for(i=0;i<1;i++)
	{
		net_ab[i].resize(n);
	}
	vector< vector< double > > d_Wjk(n);
	for(i=0;i<n;i++)
	{
		d_Wjk[i].resize(input_col);
	}
	vector< vector< double > > d_Wij(output_col);
	for(i=0;i<output_col;i++)
	{
		d_Wij[i].resize(n);
	}
	vector< vector< double > > d_a(1);
	for(i=0;i<1;i++)
	{
		d_a[i].resize(n);
	}
	vector< vector< double > > d_b(1);
	for(i=0;i<1;i++)
	{
		d_b[i].resize(n);
	}
	//%% 输入输出数据归一化
	double tempmax = 0.0,tempmin = 0.0;
	vector< double > input_max(input_col);
	vector< double > input_min(input_col);
	vector< vector< double > > Input1(input_row);
	for(i=0;i<input_row;i++)
	{
		Input1[i].resize(input_col);
	}
	for(i = 0;i <input_col;i++)
	{
		tempmax=Input[0][i];
		tempmin=Input[0][i];
		for(j = 0;j < input_row;j++)
		{
			if(Input[j][i] > tempmax)
				tempmax = Input[j][i];
			if(Input[j][i] < tempmin)
				tempmin = Input[j][i];
		}
		input_max[i] = tempmax;
		input_min[i] = tempmin;
		for(j = 0;j < input_row;j++)
		{
			if(input_max[i] == input_min[i])
				Input1[j][i]=0;
			else
				Input1[j][i] = 2*(Input[j][i] - input_min[i])/(input_max[i] - input_min[i])-1;
		}
	}
	vector< double > output_max(output_col);
	vector< double > output_min(output_col);
	vector< vector< double > > PreInput1(output_row);
	for(i=0;i<output_row;i++)
	{
		PreInput1[i].resize(output_col);
	}
	for(i = 0;i <output_col;i++)
	{
		tempmax=PreInput[0][i];
		tempmin=PreInput[0][i];
		for(j = 0;j < output_row;j++)
		{
			if(PreInput[j][i] > tempmax)
				tempmax = PreInput[j][i];
			if(PreInput[j][i] < tempmin)
				tempmin = PreInput[j][i];
		}
		output_max[i] = tempmax;
		output_min[i] = tempmin;
		for(j = 0;j < output_row;j++)
		{
			if(output_max[i] == output_min[i])
				PreInput1[j][i] = 0;
			else
				PreInput1[j][i] = 2*(PreInput[j][i] - output_min[i])/(output_max[i] - output_min[i])-1;
		}
	}

	//%% 网络训练
	vector< double > x(input_col);
	vector< double > yqw(output_col);
	vector< double > error(maxgen);
	double temp = 0.0;
	for(i = 0; i < maxgen; i++)
	{
		//%误差累计
		error[i]=0.0;
		for(kk = 0;kk <input_row;kk++)
		{
			for(kkk = 0;kkk <input_col ; kkk++)
			{
				x[kkk] = Input1[kk][kkk];
			}
			for(kkk = 0;kkk <output_col ; kkk++)
				
			{
				yqw[kkk] = PreInput1[kk][kkk];
			}
			for(j = 0;j <n; j++ )
			{
				for(k = 0;k<input_col ; k++)
				{
					net[0][j]=net[0][j]+Wjk[j][k]*x[k];
					net_ab[0][j]=(net[0][j]-b[0][j])/a[0][j];
				}
				temp = mymorlet(net_ab[0][j]);
				for(k = 0;k<output_col ; k++)
				{
					y[0][k] = y[0][k] + Wij[k][j]*temp;
				}
			}
			for(j = 0;j <output_col ;j++)
			{
				temp = temp+abs(yqw[j] - y[0][j]);
			}
			error[i] = error[i]+temp;
			for(j = 0;j < n;j++)
			{
				temp = mymorlet(net_ab[0][j]);
				for(k = 0;k < output_col;k++)
				{
					d_Wij[k][j] = d_Wij[k][j] - (yqw[k] - y[0][k])*temp;
				}
				temp = d_mymorlet(net_ab[0][j]);
				for(k = 0;k< input_col ;k++)
				{
					for(kkk = 0; kkk< output_col ;kkk++)
					{
						d_Wjk[j][k] = d_Wjk[j][k] + (yqw[kkk] - y[0][kkk])*Wij[kkk][j];
					}
					d_Wjk[j][k] = -d_Wjk[j][k]*temp*x[k]/a[0][j];
				}
				for(k = 0;k <output_col ;k++)
				{
					d_b[0][j] = d_b[0][j] + (yqw[k] - y[0][k])*Wij[k][j];
				}
				d_b[0][j] = d_b[0][j]*temp/a[0][j];
				for(k = 0; k <output_col; k++)
				{
					d_a[0][j] = d_a[0][j] + (yqw[k] - y[0][k])*Wij[k][j];
				}
				d_a[0][j] = d_a[0][j]*temp*((net[0][j] - b[0][j])/b[0][j])/a[0][j];
			}
				
			///权值参数更新
			for(j = 0;j <n;j++)
			{
				for(k = 0;k < input_col;k++)
				{
					Wjk[j][k] = Wjk[j][k] - lr1*d_Wjk[j][k];
					d_Wjk[j][k] = 0.0;
					Wjk_1[j][k] =Wjk[j][k];
					Wjk_2[j][k] =Wjk_1[j][k];
				}
				b[0][j] = b[0][j] - lr2*d_b[0][j];
				a[0][j] = a[0][j] - lr2*d_a[0][j];
				d_a[0][j] = 0.0;
				d_b[0][j] = 0.0;
				net[0][j] = 0.0;
				net_ab[0][j] = 0.0;
				a_1[0][j] = a[0][j];
				a_2[0][j] = a_1[0][j];
				b_1[0][j] = b[0][j];
				b_1[0][j] = b_1[0][j];
			}
			for(j = 0;j <output_col;j++)
			{
				for(k = 0;k < n;k++)
				{
					Wij[j][k] = Wij[j][k] - lr1*d_Wij[j][k];
					d_Wij[j][k] = 0.0;
					Wij_1[j][k] =Wij[j][k];
					Wij_2[j][k] =Wij_1[j][k];
				}
				y[0][j] = 0.0;		
			}	
		}
	}
	
	
	// 网络预测
	//预测输入归一化
	vector< double > inputtest_max(input_col);
	vector< double > inputtest_min(input_col);
	vector< vector< double > > OutputAsInput1(inputtest_row);
	for(i=0;i<inputtest_row;i++)
	{
		OutputAsInput1[i].resize(input_col);
	}
	//double inputtest_min[input_col] = {{0.0}};
	for(i = 0;i <input_col;i++)
	{
		tempmax=Output[0][i];
		tempmin=Output[0][i];
		for(j = 0;j < inputtest_row;j++)
		{
			if(Output[j][i] > tempmax)
				tempmax = Output[j][i];
			if(Output[j][i] < tempmin)
				tempmin = Output[j][i];
		}
		inputtest_max[i] = tempmax;
		inputtest_min[i] = tempmin;
		for(j = 0;j < inputtest_row;j++)
		{
			if(inputtest_max[i] == inputtest_min[i])
				OutputAsInput1[j][i] = 0.5*(input_max[i] + input_min[i]);
			else
				OutputAsInput1[j][i] = (Output[j][i] - inputtest_min[i])/(inputtest_max[i] - inputtest_min[i])*(input_max[i] - input_min[i]) + input_min[i];
		}
	}

	/网络预测
	vector< double > x_test(input_col);
	vector< vector< double > > yuce(1);
	for(i=0;i<1;i++)
	{
		yuce[i].resize(inputtest_row);
	}
	for(i = 0; i <inputtest_row; i++)
	{
		for(j = 0; j <input_col; j++)
		{
			x_test[j] = OutputAsInput1[i][j];
		}
		for(j = 0; j <n; j++)
		{
			for(k = 0; k < input_col; k++)
			{
				net[0][j] = net[0][j] + Wjk[j][k]*x_test[k];
				net_ab[0][j] = (net[0][j] - b[0][j])/a[0][j];
			}
			temp = mymorlet(net_ab[0][j]);
			for(k = 0; k < output_col; k++)
			{
				y[0][k] = y[0][k] + Wij[k][j]*temp;
			}
		}
		yuce[0][i] = y[0][k-1];
		for(j = 0;j <output_col;j++)
		{
			y[0][j] = 0.0;
		}
		for(j = 0;j < n;j++)
		{
			net[0][j] = 0.0;
			net_ab[0][j] = 0.0;
		}
	}
	
	vector< double > yun(outputtest_row);
	for(i = 0; i < outputtest_row; i ++)
	{
		yun[i] = (yuce[0][i]+1)/2*(output_max[0] - output_min[0]) + output_min[0];
		PreOutput[i][output_col-1]=yun[i];
	}
	return;
}
 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值