云模型云滴生成 - python & matlab

  • 本文由来

[看论文,定量与定性之间评价关系里经常有人用到云模型,看了后觉得,还真是给一个量化指标就能输出分类的确定度,python代码照着MATLAB写的,自从用了python后很少用MATLAB了,留下来省的以后用的时候再找MATLAB脚本了。]

2018年写小论文期间,由于计算及绘图需要,写了本文代码,随后放到此博客,避免遗忘,且希望能帮到需要的人。代码并无任何创新,纯粹是云理论的python实现。2018至今,经过多位同学的咨询提问,本文代码得以逐步美化,在此表示感谢。

------------------------------------------------分割线------------------------------------------------------------------

有位同学需要matlab版本的代码,想了想在学校大多数人也不愿意折腾python,matlab那么方便干嘛不用,于是花了个把小时写了个matlab版本的代码,放在python代码后面了,请拿去使用,不用谢。

------------------------------------------------分割线 python代码----------------------------------------------------

  • 头文件及基础配置

引入:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from time import time,clock

添加字段,以再matplotlib中显示中文字符 

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.ion() # 关闭阻塞模式

------------------------------------------------分割线------------------------------------------------------------------

  • 一维云模型
def plot_cloud_model(Ex, En, He, n, ax, label='', color = 'r',marker = 'o'):
    """该函数每次画1个云图

    Args:
        Ex (float): 期望
        En (float): 熵
        He (float): 超熵
        n (int): 云滴数量
        ax (Axes): 画布,云图将绘制到指定画布上
        label (str, optional): 云图名称,会显示在图例中,默认为空
        color (str, optional): 云图颜色,默认'r'代表红色
        marker (str, optional): 数据点显示符号,默认显示一个圆圈
    """    
    Y = np.zeros((1, n))
    np.random.seed(int(np.random.random()*100))
    X= np.random.normal(loc=En, scale=He, size=n)
    Y = Y[0]
    for i in range(n):
        np.random.seed(int(np.random.random()*100) + i + 1)
        Enn = X[i]
        X[i] = np.random.normal(loc=Ex, scale=np.abs(Enn), size=1)
        Y[i] = np.exp(-(X[i] - Ex) * (X[i] - Ex) / (2 * Enn * Enn))
    ax.scatter(X, Y, s=10, alpha=0.5, c=color, marker=marker, label=label)

执行:

if __name__ =='__main__': 
    fig = plt.figure(len(plt.get_fignums()))
    ax = fig.add_subplot(111) #创建画布,画布句柄为ax
    title = '设置你的标题'
    ax.set_title(title)#在ax指向的画布上绘图
    ax.set_xlabel('期望')
    ax.set_ylabel('隶属度')
    ax.grid(True)
    plot_cloud_model(1.5, 0.61, 0.1, 500, ax,'云图1','r','o')
    plot_cloud_model(2.0, 0.33, 0.1, 500, ax,'云图2','g','x')
    plot_cloud_model(-1, 0.8, 0.1, 500, ax,'云图3','b','*')
    ax.legend(loc='best')
    plt.show()
    plt.pause(3600)  # 延时关闭,以便开启多个绘图窗口,须在程序最后执行

结果:

------------------------------------------------分割线------------------------------------------------------------------ 

  • 二维云模型
def plot_2d_cloud_model(Ex, En, He, n, ax, label='', color = 'r',marker = 'o'):
    """该函数每次画1个云图

    Args:
        Ex ([float,float]): 期望,二维数组
        En ([float,float]): 熵,二维数组
        He ([float,float]): 超熵,二维数组
        n (int): 云滴数量
        ax (Axes): 画布,必须为3d画布,云图将绘制到指定画布上
        label (str, optional): 云图名称,会显示在图例中,默认为空
        color (str, optional): 云图颜色,默认'r'代表红色
        marker (str, optional): 数据点显示符号,默认显示一个圆圈
    """  
    Y = np.zeros((1, n))
    np.random.seed(int(np.random.random()*100))
    X0 = np.random.normal(loc=En[0], scale=He[0], size=n)
    Y = Y[0]
    np.random.seed(int(np.random.random()*100)+1)
    X1 = np.random.normal(loc=En[1], scale=He[1], size=n)
    for i in range(n):
        Enn0 = X0[i]
        np.random.seed(int(np.random.random()*100)+i)
        X0[i] = np.random.normal(loc=Ex[0], scale=np.abs(Enn0), size=1)
        Enn1 = X1[i]
        np.random.seed(int(np.random.random()*100)+i+1)
        X1[i] = np.random.normal(loc=Ex[1], scale=np.abs(Enn1), size=1)
        Y[i] = np.exp(-(X0[i] - Ex[0]) * (X0[i] - Ex[0]) / (2 * Enn0 * Enn0)-(X1[i] - Ex[1]) * (X1[i] - Ex[1]) / (2 * Enn1 * Enn1))
    ax.scatter(X0, X1, Y, s=10, alpha=0.5, c=color, marker=marker,label=label)

执行:

if __name__ =='__main__': 
    fig_3d = plt.figure(len(plt.get_fignums()))
    fig_3d = fig_3d.add_subplot(111, projection='3d') #创建三维画布,画布句柄为ax_3d
    title = '设置你的标题'
    fig_3d.set_title(title)#在ax_3d指向的画布上绘图
    fig_3d.set_xlabel('期望1')
    fig_3d.set_ylabel('期望2')
    fig_3d.set_zlabel('隶属度')
    fig_3d.grid(True)
    plot_2d_cloud_model([1.5,2], [0.61,0.2], [0.1,0.1], 2000, fig_3d,'云图1','r','o')
    plot_2d_cloud_model([2.0,2.5], [0.33,0.5], [0.1,0.1], 2000, fig_3d,'云图2','g','x')
    plot_2d_cloud_model([-1,1], [0.8,0.1], [0.1,0.1], 2000, fig_3d,'云图3','b','*')
    fig_3d.legend(loc='best')
    plt.show()
    plt.pause(3600)  # 延时关闭,以便开启多个绘图窗口,须在程序最后执行

结果:


------------------------------------------------分割线------------------------------------------------------------------

  • 二维可分割云模型
def plot_2d_trim_cloud_model(Ex, En, He, n, ax, trim_panel=[[1.5,0.5,0],[0.5,1.5,0],[0.5,1.5,1],1],label='', color = 'r',marker = 'o'):
    """该函数每次画1个云图

    Args:
        Ex ([float,float]): 期望,二维数组
        En ([float,float]): 熵,二维数组
        He ([float,float]): 超熵,二维数组
        n (int): 云滴数量
        ax (Axes): 画布,必须为3d画布,云图将绘制到指定画布上
        trim_panel:分割面,数组的前三个元素为分割面上的三个点,最后一位>0时筛选出分割面以上的点,<0时筛选出分割面以下的点
        label (str, optional): 云图名称,会显示在图例中,默认为空
        color (str, optional): 云图颜色,默认'r'代表红色
        marker (str, optional): 数据点显示符号,默认显示一个圆圈
    """      
    #确定分割panel的四个参数
    a=(trim_panel[1][1]-trim_panel[0][1])*(trim_panel[2][2]-trim_panel[0][2])-(trim_panel[1][2]-trim_panel[0][2])*(trim_panel[2][1]-trim_panel[0][1])
    b=(trim_panel[1][2]-trim_panel[0][2])*(trim_panel[2][0]-trim_panel[0][0])-(trim_panel[1][0]-trim_panel[0][0])*(trim_panel[2][2]-trim_panel[0][2])
    c=(trim_panel[1][0]-trim_panel[0][0])*(trim_panel[2][1]-trim_panel[0][1])-(trim_panel[1][1]-trim_panel[0][1])*(trim_panel[2][0]-trim_panel[0][0])
    d=-(a*trim_panel[0][0]+b*trim_panel[0][1]+c*trim_panel[0][2])

    Y = np.zeros((1, n))
    np.random.seed(int(np.random.random()*100))
    X0 = np.random.normal(loc=En[0], scale=He[0], size=n)
    Y = Y[0]
    np.random.seed(int(np.random.random()*100)+1)
    X1 = np.random.normal(loc=En[1], scale=He[1], size=n)
    for i in range(n):
        Enn0 = X0[i]
        np.random.seed(int(np.random.random()*100)+i)
        X0[i] = np.random.normal(loc=Ex[0], scale=np.abs(Enn0), size=1)
        Enn1 = X1[i]
        np.random.seed(int(np.random.random()*100)+i+1)
        X1[i] = np.random.normal(loc=Ex[1], scale=np.abs(Enn1), size=1)
        Y[i] = np.exp(-(X0[i] - Ex[0]) * (X0[i] - Ex[0]) / (2 * Enn0 * Enn0)-(X1[i] - Ex[1]) * (X1[i] - Ex[1]) / (2 * Enn1 * Enn1))

    #筛选出分割面一侧的点
    Selected_X0 = []
    Selected_X1 = []
    Selected_Y = []
    if(trim_panel[3]>0):
        for i in range(n):
            if((a*X0[i]+b*X1[i]+c*Y[i]+d)>=0):
                Selected_X0.append(X0[i])
                Selected_X1.append(X1[i])
                Selected_Y.append(Y[i])
    else:
        for i in range(n):
            if((a*X0[i]+b*X1[i]+c*Y[i]+d)<0):
                Selected_X0.append(X0[i])
                Selected_X1.append(X1[i])
                Selected_Y.append(Y[i])
    ax.scatter(Selected_X0, Selected_X1, Selected_Y, s=10, alpha=0.5, c=color, marker=marker,label=label)

执行:

if __name__ =='__main__': 
    fig_3d_trim = plt.figure(len(plt.get_fignums()))
    ax_3d_trim = fig_3d_trim.add_subplot(111, projection='3d') #创建三维画布,画布句柄为ax_3d
    title = '设置你的标题'
    ax_3d_trim.set_title(title)#在ax_3d指向的画布上绘图
    ax_3d_trim.set_xlabel('期望1')
    ax_3d_trim.set_ylabel('期望2')
    ax_3d_trim.set_zlabel('隶属度')
    ax_3d_trim.grid(True)
    trim_panel = [[2,2,0],[0.5,1.5,0],[0.5,1.5,1],1]#定义一个分割面
    plot_2d_trim_cloud_model([1.5,2], [0.61,0.2], [0.1,0.1], 2000, ax_3d_trim,trim_panel,'云图1','r','o')
    plot_2d_trim_cloud_model([2.0,2.5], [0.33,0.5], [0.1,0.1], 2000, ax_3d_trim,trim_panel,'云图2','g','x')
    plot_2d_trim_cloud_model([-1,1], [0.8,0.1], [0.1,0.1], 2000, ax_3d_trim,trim_panel,'云图3','b','*')
    ax_3d_trim.legend(loc='best')
    plt.show()
    plt.pause(3600)  # 延时关闭,以便开启多个绘图窗口,须在程序最后执行

结果:

------------------------------------------------分割线------------------------------------------------------------------

  • 代码汇总
import numpy as np
import matplotlib.pyplot as plt
from time import perf_counter
plt.rcParams['font.sans-serif'] = ['SimHei']    #运行配置参数中的字体(font)为黑体(simHei)
plt.rcParams['axes.unicode_minus'] = False    #运行配置参数总的轴(axes)正常显示正负号(minus)
plt.ion() # 关闭阻塞模式

def plot_cloud_model(Ex, En, He, n, ax, label='', color = 'r',marker = 'o'):
    """该函数每次画1个云图

    Args:
        Ex (float): 期望
        En (float): 熵
        He (float): 超熵
        n (int): 云滴数量
        ax (Axes): 画布,云图将绘制到指定画布上
        label (str, optional): 云图名称,会显示在图例中,默认为空
        color (str, optional): 云图颜色,默认'r'代表红色
        marker (str, optional): 数据点显示符号,默认显示一个圆圈
    """    
    Y = np.zeros((1, n))
    np.random.seed(int(np.random.random()*100))
    X= np.random.normal(loc=En, scale=He, size=n)
    Y = Y[0]
    for i in range(n):
        np.random.seed(int(np.random.random()*100) + i + 1)
        Enn = X[i]
        X[i] = np.random.normal(loc=Ex, scale=np.abs(Enn), size=1)
        Y[i] = np.exp(-(X[i] - Ex) * (X[i] - Ex) / (2 * Enn * Enn))
    ax.scatter(X, Y, s=10, alpha=0.5, c=color, marker=marker, label=label)

def plot_2d_cloud_model(Ex, En, He, n, ax, label='', color = 'r',marker = 'o'):
    """该函数每次画1个云图

    Args:
        Ex ([float,float]): 期望,二维数组
        En ([float,float]): 熵,二维数组
        He ([float,float]): 超熵,二维数组
        n (int): 云滴数量
        ax (Axes): 画布,必须为3d画布,云图将绘制到指定画布上
        label (str, optional): 云图名称,会显示在图例中,默认为空
        color (str, optional): 云图颜色,默认'r'代表红色
        marker (str, optional): 数据点显示符号,默认显示一个圆圈
    """  
    Y = np.zeros((1, n))
    np.random.seed(int(np.random.random()*100))
    X0 = np.random.normal(loc=En[0], scale=He[0], size=n)
    Y = Y[0]
    np.random.seed(int(np.random.random()*100)+1)
    X1 = np.random.normal(loc=En[1], scale=He[1], size=n)
    for i in range(n):
        Enn0 = X0[i]
        np.random.seed(int(np.random.random()*100)+i)
        X0[i] = np.random.normal(loc=Ex[0], scale=np.abs(Enn0), size=1)
        Enn1 = X1[i]
        np.random.seed(int(np.random.random()*100)+i+1)
        X1[i] = np.random.normal(loc=Ex[1], scale=np.abs(Enn1), size=1)
        Y[i] = np.exp(-(X0[i] - Ex[0]) * (X0[i] - Ex[0]) / (2 * Enn0 * Enn0)-(X1[i] - Ex[1]) * (X1[i] - Ex[1]) / (2 * Enn1 * Enn1))
    ax.scatter(X0, X1, Y, s=10, alpha=0.5, c=color, marker=marker,label=label)

def plot_2d_trim_cloud_model(Ex, En, He, n, ax, trim_panel=[[1.5,0.5,0],[0.5,1.5,0],[0.5,1.5,1],1],label='', color = 'r',marker = 'o'):
    """该函数每次画1个云图

    Args:
        Ex ([float,float]): 期望,二维数组
        En ([float,float]): 熵,二维数组
        He ([float,float]): 超熵,二维数组
        n (int): 云滴数量
        ax (Axes): 画布,必须为3d画布,云图将绘制到指定画布上
        trim_panel:分割面,数组的前三个元素为分割面上的三个点,最后一位>0时筛选出分割面以上的点,<0时筛选出分割面以下的点
        label (str, optional): 云图名称,会显示在图例中,默认为空
        color (str, optional): 云图颜色,默认'r'代表红色
        marker (str, optional): 数据点显示符号,默认显示一个圆圈
    """      
    #确定分割panel的四个参数
    a=(trim_panel[1][1]-trim_panel[0][1])*(trim_panel[2][2]-trim_panel[0][2])-(trim_panel[1][2]-trim_panel[0][2])*(trim_panel[2][1]-trim_panel[0][1])
    b=(trim_panel[1][2]-trim_panel[0][2])*(trim_panel[2][0]-trim_panel[0][0])-(trim_panel[1][0]-trim_panel[0][0])*(trim_panel[2][2]-trim_panel[0][2])
    c=(trim_panel[1][0]-trim_panel[0][0])*(trim_panel[2][1]-trim_panel[0][1])-(trim_panel[1][1]-trim_panel[0][1])*(trim_panel[2][0]-trim_panel[0][0])
    d=-(a*trim_panel[0][0]+b*trim_panel[0][1]+c*trim_panel[0][2])

    Y = np.zeros((1, n))
    np.random.seed(int(np.random.random()*100))
    X0 = np.random.normal(loc=En[0], scale=He[0], size=n)
    Y = Y[0]
    np.random.seed(int(np.random.random()*100)+1)
    X1 = np.random.normal(loc=En[1], scale=He[1], size=n)
    for i in range(n):
        Enn0 = X0[i]
        np.random.seed(int(np.random.random()*100)+i)
        X0[i] = np.random.normal(loc=Ex[0], scale=np.abs(Enn0), size=1)
        Enn1 = X1[i]
        np.random.seed(int(np.random.random()*100)+i+1)
        X1[i] = np.random.normal(loc=Ex[1], scale=np.abs(Enn1), size=1)
        Y[i] = np.exp(-(X0[i] - Ex[0]) * (X0[i] - Ex[0]) / (2 * Enn0 * Enn0)-(X1[i] - Ex[1]) * (X1[i] - Ex[1]) / (2 * Enn1 * Enn1))

    #筛选出分割面一侧的点
    Selected_X0 = []
    Selected_X1 = []
    Selected_Y = []
    if(trim_panel[3]>0):
        for i in range(n):
            if((a*X0[i]+b*X1[i]+c*Y[i]+d)>=0):
                Selected_X0.append(X0[i])
                Selected_X1.append(X1[i])
                Selected_Y.append(Y[i])
    else:
        for i in range(n):
            if((a*X0[i]+b*X1[i]+c*Y[i]+d)<0):
                Selected_X0.append(X0[i])
                Selected_X1.append(X1[i])
                Selected_Y.append(Y[i])
    ax.scatter(Selected_X0, Selected_X1, Selected_Y, s=10, alpha=0.5, c=color, marker=marker,label=label)


if __name__ =='__main__': 
    # 画二维图
    fig = plt.figure(len(plt.get_fignums()))
    ax = fig.add_subplot(111) #创建画布,画布句柄为ax
    title = '设置你的标题'
    ax.set_title(title)#在ax指向的画布上绘图
    ax.set_xlabel('期望')
    ax.set_ylabel('隶属度')
    ax.grid(True)
    plot_cloud_model(1.5, 0.61, 0.1, 500, ax,'云图1','r','o')
    plot_cloud_model(2.0, 0.33, 0.1, 500, ax,'云图2','g','x')
    plot_cloud_model(-1, 0.8, 0.1, 500, ax,'云图3','b','*')
    ax.legend(loc='best')

    # 画三维图
    fig_3d = plt.figure(len(plt.get_fignums()))
    ax_3d = fig_3d.add_subplot(111, projection='3d') #创建三维画布,画布句柄为ax_3d
    title = '设置你的标题'
    ax_3d.set_title(title)#在ax_3d指向的画布上绘图
    ax_3d.set_xlabel('期望1')
    ax_3d.set_ylabel('期望2')
    ax_3d.set_zlabel('隶属度')
    ax_3d.grid(True)
    plot_2d_cloud_model([1.5,2], [0.61,0.2], [0.1,0.1], 2000, ax_3d,'云图1','r','o')
    plot_2d_cloud_model([2.0,2.5], [0.33,0.5], [0.1,0.1], 2000, ax_3d,'云图2','g','x')
    plot_2d_cloud_model([-1,1], [0.8,0.1], [0.1,0.1], 2000, ax_3d,'云图3','b','*')
    ax_3d.legend(loc='best')

    # 画带分割面的三维图
    fig_3d_trim = plt.figure(len(plt.get_fignums()))
    ax_3d_trim = fig_3d_trim.add_subplot(111, projection='3d') #创建三维画布,画布句柄为ax_3d
    title = '设置你的标题'
    ax_3d_trim.set_title(title)#在ax_3d指向的画布上绘图
    ax_3d_trim.set_xlabel('期望1')
    ax_3d_trim.set_ylabel('期望2')
    ax_3d_trim.set_zlabel('隶属度')
    ax_3d_trim.grid(True)
    trim_panel = [[2,2,0],[0.5,1.5,0],[0.5,1.5,1],1]#定义一个分割面
    plot_2d_trim_cloud_model([1.5,2], [0.61,0.2], [0.1,0.1], 2000, ax_3d_trim,trim_panel,'云图1','r','o')
    plot_2d_trim_cloud_model([2.0,2.5], [0.33,0.5], [0.1,0.1], 2000, ax_3d_trim,trim_panel,'云图2','g','x')
    plot_2d_trim_cloud_model([-1,1], [0.8,0.1], [0.1,0.1], 2000, ax_3d_trim,trim_panel,'云图3','b','*')
    ax_3d_trim.legend(loc='best')
    plt.show()
    plt.pause(3600)  # 延时关闭,以便开启多个绘图窗口,须在程序最后执行

------------------------------------------------分割线 matlab代码-----------------------------------------------------

clear;
clc;
% 生成3个1维云模型数据
cloud1 = generate_cloud_model(5,1,0.01,200,'云图1','r','o');
cloud2 = generate_cloud_model(9,3,0.01,200,'云图2','b','o');
cloud3 = generate_cloud_model(-2,2,0.01,200,'云图3','m','o');
% 绘制刚才生成的2个1维云模型
plot_cloud_models({cloud1,cloud2,cloud3},'这是一张1维云图','指标1','隶属度');

% 生成3个2维云模型数据
cloud4 = generate_2d_cloud_model([5 5],[2 4],[0.01 0.001],200,'云图4','r','*');
cloud5 = generate_2d_cloud_model([15 10],[4 2],[0.01 0.001],200,'云图5','b','*');
cloud6 = generate_2d_cloud_model([10 2],[1 3],[0.01 0.001],200,'云图6','m','*');
% 绘制刚才生成的2个2维云模型
plot_2d_cloud_models({cloud4,cloud5,cloud6},'这是一张2维云图','指标1','指标2','隶属度');

%% 生成1组1维云模型数据
function result = generate_cloud_model(Ex, En, He, n, label, color,marker)
    % Ex, 云模型的期望,是1维向量
    % En, 云模型的熵,是1维向量
    % He, 云模型的超熵,是1维向量
    % n, 云模型数据点数量,是1维向量
    % label, 云模型图例标签,是1维向量
    % color, 云模型绘图时的点的颜色,是1维向量
    % marker,云模型绘图时的点的形状,是1维向量
    Y = zeros(n,1);
    X = normrnd(En,He,n,1);
    for i=1:n
        Enn = X(i);
        X(i) = normrnd(Ex,abs(Enn),1,1);
        Y(i) = power(exp(1),-(X(i) - Ex) * (X(i) - Ex) / (2 * Enn * Enn));

    end
    result = {X,Y,color,marker,label};
end
%% 生成1组2维云模型数据
function result = generate_2d_cloud_model(Ex, En, He, n, label, color,marker)
    % Ex, 云模型的期望,是2维向量
    % En, 云模型的熵,是2维向量
    % He, 云模型的超熵,是2维向量
    % n, 云模型数据点数量,是1维向量
    % label, 云模型图例标签,是1维向量
    % color, 云模型绘图时的点的颜色,是1维向量
    % marker,云模型绘图时的点的形状,是1维向量
    Y = zeros(n,1);
    X1 = normrnd(En(1),He(1),n,1);
    X2 = normrnd(En(2),He(2),n,1);
    for i=1:n
        Enn1 = X1(i);
        X1(i) = normrnd(Ex(1),abs(Enn1),1,1);
        Enn2 = X2(i);
        X2(i) = normrnd(Ex(2),abs(Enn2),1,1);
        Y(i) = power(exp(1),-(X1(i) - Ex(1)) * (X1(i) - Ex(1)) / (2 * Enn1 * Enn1)-(X2(i) - Ex(2)) * (X2(i) - Ex(2)) / (2 * Enn2 * Enn2));

    end
    result = {X1,X2,Y,color,marker,label};
end
%% 画多个1维云模型图,云模型数据由generate函数生成
function plot_cloud_models(models,model_title,x_label,y_label)
    % models,包含了多组云模型数据,在本函数中将这些云模型数据画出来
    % model_title,要绘制图的title
    % x_label,要绘制图的x轴标签
    % y_label,要绘制图的y轴标签
    model_count = length(models);
    if(model_count == 0)
        return;
    end
    labels = strings(1,model_count);
    figure;
    hold on;
    for i=1:model_count
        cur_model = models(i);
        cur_model = cur_model{1};
        X = cur_model{1};
        Y = cur_model{2};
        color = cur_model{3};
        marker = cur_model{4};
        labels(i) = cur_model{5};
        scatter(X,Y,color,marker);
    end
    legend(labels); 
    title(model_title)
    xlabel(x_label) 
    ylabel(y_label) 
    grid on;
    view(2)
    hold off;
end
%% 画多个2维云模型图,云模型数据由generate函数生成
function plot_2d_cloud_models(models,model_title,x_label,y_label,z_label)
    % models,包含了多组云模型数据,在本函数中将这些云模型数据画出来
    % model_title,要绘制图的title
    % x_label,要绘制图的x轴标签
    % y_label,要绘制图的y轴标签
    % z_label,要绘制图的z轴标签
    model_count = length(models);
    if(model_count == 0)
        return;
    end
    labels = strings(1,model_count);
    figure;
    hold on;
    for i=1:model_count
        cur_model = models(i);
        cur_model = cur_model{1};
        X = cur_model{1};
        Y = cur_model{2};
        Z = cur_model{3};
        color = cur_model{4};
        marker = cur_model{5};
        labels(i) = cur_model{6};
        scatter3(X,Y,Z,color,marker);
    end
    legend(labels); 
    title(model_title)
    xlabel(x_label) 
    ylabel(y_label) 
    zlabel(z_label) 
    grid on;
    view(3)
    hold off;
end
matlab绘图结果:

  • 落款

如有疑问,评论留言或imtht.cn@gmail.com,知无不言,祝各位早日交稿费。

  • 40
    点赞
  • 223
    收藏
    觉得还不错? 一键收藏
  • 71
    评论
以下是一个简单的模型生成图的Python代码示例: ```python import numpy as np import matplotlib.pyplot as plt # 模型函数 def cloud_model(x, y, z): # 确定三元组的权重 a = np.min([x, y, z]) b = np.mean([x, y, z]) c = np.max([x, y, z]) # 计算中间变量 alpha = (b - a) / (c - a) beta = (c - b) / (c - a) # 生成随机数 rand = np.random.uniform(0, 1) # 计算上下界 lower_bound = b - alpha * (c - b) upper_bound = b + beta * (c - b) # 计算云滴值 result = rand * (upper_bound - lower_bound) + lower_bound return result # 生成图 def generate_cloud_map(size): # 随机生成三元组 x = np.random.uniform(0, 1, size) y = np.random.uniform(0, 1, size) z = np.random.uniform(0, 1, size) # 使用模型生成图 cloud_map = np.zeros((size, size)) for i in range(size): for j in range(size): cloud_map[i][j] = cloud_model(x[i], y[j], z[(i+j)%size]) return cloud_map # 显示图 def show_cloud_map(cloud_map): plt.imshow(cloud_map, cmap='gray') plt.axis('off') plt.show() # 示例调用 size = 100 cloud_map = generate_cloud_map(size) show_cloud_map(cloud_map) ``` 在这个代码示例中,我们首先实现了一个模型函数,用于生成云滴值。接着我们实现了一个生成图的函数,该函数随机生成三元组,并使用模型生成一个size*size的图。最后,我们实现了一个显示图的函数,将图以灰图的形式显示出来。 在示例调用中,我们指定了图的大小为100,随机生成了三元组并使用模型生成图,最后使用matplotlib将图显示出来。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 71
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值