题目
每条道路都有限重,一些货车从某个城市到达另一个城市,求最多可载多少的货物。
分析
咋一看,貌似有点难,后来发现不就kruskal(改成最大生成树)吗,然后怎样求两点间的最大载重就用树上倍增。
代码
#include <cstdio>
#include <queue>
#include <cctype>
#include <algorithm>
using namespace std;
queue<int>qu;
struct node{int x,y,w;}a[50001];
struct tree{int y,w,next;}e[100001];
int n,m,g,q,ls[10001],father[10001],f[10001][21],dis[10001][21],dep[10001];
int in(){
int ans=0; char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=ans*10+c-48,c=getchar();
return ans;
}
int min(int a,int b){return (a<b)?a:b;}
int max(int a,int b){return (a>b)?a:b;}
void add(int x,int y,int w){e[++m].y=y; e[m].w=w; e[m].next=ls[x]; ls[x]=m;}
void rn(int &a,int &b,int &c){a=in();b=in();c=in();}
void gn(int &a,int &b){a=in();b=in();}
bool cmp(node x,node y){return x.w>y.w;}
int getf(int u){return (father[u]==u)?u:father[u]=getf(father[u]);}
int lca(int x,int y){//lca
int ans=1000000;
if (dep[x]<dep[y]) swap(x,y);
for (int i=17;i>=0;i--) if (dep[x]-(1<<i)>=dep[y]) ans=min(ans,dis[x][i]),x=f[x][i];
if (x==y) return ans;
for (int i=17;i>=0;i--) if (f[x][i]!=f[y][i])
ans=min(ans,min(dis[x][i],dis[y][i])),x=f[x][i],y=f[y][i];
return min(ans,min(dis[x][0],dis[y][0]));
}
int main(){
gn(n,m);
for (int i=1;i<=n;i++) father[i]=i;
for (int i=1;i<=m;i++) rn(a[i].x,a[i].y,a[i].w);
stable_sort(a+1,a+1+m,cmp); g=m; m=0;
for (int i=1,im=1;i<n&&im<=g;i++,im++)//kruskal
if (getf(a[im].y)!=getf(a[im].x)){
father[getf(a[im].y)]=getf(a[im].x);
add(a[im].x,a[im].y,a[im].w);
add(a[im].y,a[im].x,a[im].w);
}else i--;
for (int i=1;i<=n;i++)
if (!dep[i]){
dis[i][0]=1000000;
qu.push(i); dep[i]=1;
while (qu.size()){
int x=qu.front(); qu.pop();
for (int t=ls[x];t;t=e[t].next){
int y=e[t].y;
if (dep[y]) continue;
qu.push(y);
f[y][0]=x;
dep[y]=dep[x]+1;
dis[y][0]=e[t].w;
}
}
}
for (int j=1;(1<<(j-1))<=n;j++)
for (int i=1;i<=n;i++)
f[i][j]=f[f[i][j-1]][j-1],dis[i][j]=min(dis[i][j-1],dis[f[i][j-1]][j-1]);
q=in();
for (int i=1;i<=q;i++){
int x,y; gn(x,y);
if (getf(x)!=getf(y)) printf("-1\n");
else printf("%d\n",lca(x,y));
}
return 0;
}