题目
在一个边缘全是篱笆里的n*m矩阵,有若干只羊和若干只狼,问最少装多少篱笆才能让狼和羊不连通(对于任意的 a i , j a_{i,j} ai,j,可与 a i − 1 , j a_{i-1,j} ai−1,j, a i + 1 , j a_{i+1,j} ai+1,j, a i , j − 1 a_{i,j-1} ai,j−1, a i , j + 1 a_{i,j+1} ai,j+1之间建篱笆)
分析
题目明显地说明了求最小割(狼和羊不连通),所以就想到了用源点连狼且汇点连羊,流量是
1
0
6
10^6
106(很大就对了),当然还有篱笆(四个方向,流量为1),如图所示后,代码不言而喻
代码
#include <cstdio>
#include <cctype>
#include <queue>
#define num(i,j) (i-1)*m+j
#define min(a,b) (a<b)?a:b
using namespace std;
struct node{int y,w,next;}e[100005];
int n,m,s,t,k=1,ans,dis[10005],ls[10005];
int in(){
int ans=0; char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=ans*10+c-48,c=getchar();
return ans;
}
void add(int x,int y,int w){
e[++k].y=y; e[k].w=w; e[k].next=ls[x]; ls[x]=k;
e[++k].y=x; e[k].w=0; e[k].next=ls[y]; ls[y]=k;
}
bool bfs(int s){
for (int i=1;i<=t;i++) dis[i]=0;
queue<int>q; q.push(s); dis[s]=1;
while (q.size()){
int x=q.front(); q.pop();
for (int i=ls[x];i;i=e[i].next)
if (e[i].w>0&&!dis[e[i].y]){
dis[e[i].y]=dis[x]+1;
if (e[i].y==t) return 1;
q.push(e[i].y);
}
}
return 0;
}
int dfs(int x,int now){
if (x==t||!now) return now;
int rest=0,f;
for (int i=ls[x];i;i=e[i].next)
if (e[i].w>0&&dis[e[i].y]==dis[x]+1){
rest+=(f=dfs(e[i].y,min(now-rest,e[i].w)));
e[i].w-=f; e[i^1].w+=f;
if (now==rest) return rest;
}
if (!rest) dis[x]=0;
return rest;
}
int main(){
n=in(); m=in(); s=n*m+1; t=n*m+2;
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++){
int x=in();
if (i>1) add(num(i,j),num(i-1,j),1);//四个方向
if (i<n) add(num(i,j),num(i+1,j),1);
if (j>1) add(num(i,j),num(i,j-1),1);
if (j<m) add(num(i,j),num(i,j+1),1);
if (!x) continue;
if (x==1) add(s,num(i,j),1e6);
else add(num(i,j),t,1e6);
}
while (bfs(s)) ans+=dfs(s,1e7);
return !printf("%d",ans);
}