#最大流#洛谷 2598 jzoj高中 1632 狼和羊的故事

题目

在一个边缘全是篱笆里的n*m矩阵,有若干只羊和若干只狼,问最少装多少篱笆才能让狼和羊不连通(对于任意的 a i , j a_{i,j} ai,j,可与 a i − 1 , j a_{i-1,j} ai1,j a i + 1 , j a_{i+1,j} ai+1,j a i , j − 1 a_{i,j-1} ai,j1 a i , j + 1 a_{i,j+1} ai,j+1之间建篱笆)


分析

题目明显地说明了求最小割(狼和羊不连通),所以就想到了用源点连狼且汇点连羊,流量是 1 0 6 10^6 106(很大就对了),当然还有篱笆(四个方向,流量为1),如图所示后,代码不言而喻
这里写图片描述


代码

#include <cstdio>
#include <cctype>
#include <queue>
#define num(i,j) (i-1)*m+j
#define min(a,b) (a<b)?a:b
using namespace std;
struct node{int y,w,next;}e[100005];
int n,m,s,t,k=1,ans,dis[10005],ls[10005];
int in(){
    int ans=0; char c=getchar();
    while (!isdigit(c)) c=getchar();
    while (isdigit(c)) ans=ans*10+c-48,c=getchar();
    return ans;
}
void add(int x,int y,int w){
    e[++k].y=y; e[k].w=w; e[k].next=ls[x]; ls[x]=k;
    e[++k].y=x; e[k].w=0; e[k].next=ls[y]; ls[y]=k;
}
bool bfs(int s){
    for (int i=1;i<=t;i++) dis[i]=0;
    queue<int>q; q.push(s); dis[s]=1;
    while (q.size()){
        int x=q.front(); q.pop();
        for (int i=ls[x];i;i=e[i].next)
        if (e[i].w>0&&!dis[e[i].y]){
            dis[e[i].y]=dis[x]+1;
            if (e[i].y==t) return 1;
            q.push(e[i].y);
        }
    }
    return 0;
}
int dfs(int x,int now){
    if (x==t||!now) return now;
    int rest=0,f;
    for (int i=ls[x];i;i=e[i].next)
    if (e[i].w>0&&dis[e[i].y]==dis[x]+1){
        rest+=(f=dfs(e[i].y,min(now-rest,e[i].w)));
        e[i].w-=f; e[i^1].w+=f;
        if (now==rest) return rest;
    }
    if (!rest) dis[x]=0;
    return rest;
}
int main(){
    n=in(); m=in(); s=n*m+1; t=n*m+2;
    for (int i=1;i<=n;i++)
    for (int j=1;j<=m;j++){
        int x=in();
        if (i>1) add(num(i,j),num(i-1,j),1);//四个方向
        if (i<n) add(num(i,j),num(i+1,j),1);
        if (j>1) add(num(i,j),num(i,j-1),1);
        if (j<m) add(num(i,j),num(i,j+1),1);
        if (!x) continue;
        if (x==1) add(s,num(i,j),1e6);
        else add(num(i,j),t,1e6);
    }
    while (bfs(s)) ans+=dfs(s,1e7);
    return !printf("%d",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值