题目
给出 n n n个回文串 s 1 , s 2 , … , s n s1, s2, …, sn s1,s2,…,sn,求如下二元组 ( i , j ) (i, j) (i,j)的个数 s i + s j si + sj si+sj仍然是回文串。
分析
若要两个回文串相连后仍是回文串,那回文串 s i si si一定是 s j ( l e n i < = l e n j ) sj(leni<=lenj) sj(leni<=lenj)的循环节(可以相等,每个回文串自己+自己肯定是个回文串),是循环节也就是前缀,先用Trie树得出一个串上每个点的前缀情况,再通过Hash判断是否为其循环节,这样得出所有 l e n [ i ] < = l e n [ j ] len[i]<=len[j] len[i]<=len[j]的满足条件的 ( s i , s j ) (si,sj) (si,sj),同样也有 ( s j , s i ) (sj,si) (sj,si)答案 ∗ = 2 *=2 ∗=2 ,但是每个 ( i , i ) (i,i) (i,i)仅有一个,这样多了 n n n,所以还要减掉 n n n
代码
#include <cstdio>
#define N 2000001
unsigned long long h[N],hp[N]; char s[N];
int trie[N][26],belong[N],end[N],len[N],n;//字符串总长度不超过n,所以字符数也不会超过n
int in(){
int ans=0; char c=getchar();
while (c<48||c>57) c=getchar();
while (c>47&&c<58) ans=ans*10+c-48,c=getchar();
return ans;
}
int main(){
hp[0]=1; for (register int i=1;i<N;i++) hp[i]=hp[i-1]*131;
n=in(); int tot=0; unsigned long long ans=0;
for (register int i=1;i<=n;i++){
len[i]=len[i-1]+in(); int p=0; unsigned long long v=0ll;//前缀和随便搞搞
for (register int j=len[i-1];j<len[i];j++){
s[j]=getchar();
if (!trie[p][s[j]-97]) trie[p][s[j]-97]=++tot;//插入新的节点
p=trie[p][s[j]-97]; v=v*131+s[j]-96;
}
end[p]++; belong[p]=i; h[i]=v;//记录结束位置和哈希值
}
for (register int i=1,p=0;i<=n;i++,p=0)
for (register int j=len[i-1];j<len[i];j++){
p=trie[p][s[j]-97];
if (end[p]&&h[belong[p]]*hp[len[i]-len[i-1]]+h[i]==h[i]*hp[len[belong[p]]-len[belong[p]-1]]+h[belong[p]]) ans+=end[p];//是循环节
}
return !printf("%llu",(ans<<1)-n);//(i,j)+(j,i)-(i,i)
}