#莫比乌斯反演,整除分块,线性筛,二分答案#bzoj 2440 jzoj 2475 洛谷 4318 完全平方数

题目

求第 k k k个没有完全平方数因子的数(自动忽略1)


分析

然而可以发现,若要这样去找,那么莫比乌斯函数不能为0,那么也就是说二分查找一个区间 [ 1 … n ] [1\dots n] [1n]使其中的符合要求的数 ≥ k \geq k k,且 n n n最小,那么具体的判断过程可以用整除分块解决。
A n s = ∑ i = 1 i 2 ≤ n ⌊ n i 2 ⌋ ∗ μ ( i ) Ans=\sum_{i=1}^{i^2\leq n}\lfloor\frac{n}{i^2}\rfloor*\mu(i) Ans=i=1i2ni2nμ(i)


代码

#include <cstdio>
#include <cmath>
#define min(a,b) ((a)<(b))?(a):(b)
#define rr register
using namespace std;
const int N=45000;
int v[N+1],mu[N+1],prime[N+1];
inline signed iut(){
    rr int ans=0; rr char c=getchar();
    while (c<48||c>57) c=getchar();
    while (c>47&&c<58) ans=(ans<<3)+(ans<<1)+c-48,c=getchar();
    return ans;
}
inline void iiiii(){//线性筛求莫比乌斯前缀和
    mu[1]=1; rr int m=0;
    for (rr int i=2;i<=N;++i){
        if (!v[i]) v[i]=i,prime[++m]=i,mu[i]=-1;
        for (rr int j=1;j<=m&&prime[j]*i<=N;++j){
            v[prime[j]*i]=prime[j];
            if (i%prime[j]==0) break;//完全平方
            mu[prime[j]*i]=-mu[i];
        }
    }
    for (rr int i=2;i<=N;++i) mu[i]+=mu[i-1];
}
inline signed check(int x,int k){
    rr int ans=0,m=sqrt(x);
    for (rr int l=1,r;l<=m;l=r+1){
        r=min(sqrt(x/(x/(l*l))),m);//一个区间都相同
        ans+=x/(l*l)*(mu[r]-mu[l-1]);//整除分块
    }
    return ans>=k;//如果符合要求
}
inline void print(int ans){
    if (ans>9) print(ans/10);
    putchar(ans%10+48);
}
inline void solve(int k){
    rr unsigned l=k,r=k<<1;//它的范围就是k到k*2之间
    while (l<r){
        rr int mid=l+r>>1;
        if (check(mid,k)) r=mid;//说明至少小于等于mid
            else l=mid+1;
    }
    print(l); putchar(10);
}
signed main(){
    iiiii();
    rr int t=iut();
    while (t--) solve(iut());
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值