#动态规划,欧拉函数,快速幂#JZOJ 1161 机器人M号

题目

已知 M = p 1 c 1 p 2 c 2 p 3 c 3 p n c n M=p_1^{c_1}p_2^{c_2}p_3^{c_3}p_n^{c_n} M=p1c1p2c2p3c3pncn,求M的因数的欧拉函数和(欧拉函数 φ ( M ) \varphi(M) φ(M):1至M中与M互质的个数),分成三种情况输出,当M的因数是偶数个不同奇素数的积,那么它是政客,当M的因数是奇数个不同奇素数的积,那么它是军人,当都不成立,就是学者。分三个职业输出。PS:题目不包括欧拉函数、因数不包括1,所以下面减去1


分析

由于 ∑ φ ( \sum\varphi( φ(学者 ) ) )比较难求,所以可以变成M-1- ∑ φ ( \sum\varphi( φ(政客 ) ) )- ∑ φ ( \sum\varphi( φ(军人 ) ) )。只要证明 ∑ d ∣ n φ ( d ) = n \sum_{d|n}\varphi(d)=n dnφ(d)=n就可以了
证:设 f ( n ) = ∑ d ∣ n φ ( d ) f(n)=\sum_{d|n}\varphi(d) f(n)=dnφ(d),利用乘法分配律,因为 φ \varphi φ是积性函数,得到
若n,m互质,则 f ( n m ) = ∑ d ∣ n m φ ( d ) = ( ∑ d ∣ n φ ( d ) ) ∗ ( ∑ d ∣ m φ ( d ) ) = f ( n ) ∗ f ( m ) f(nm)=\sum_{d|nm}\varphi(d)=(\sum_{d|n}\varphi(d))*(\sum_{d|m}\varphi(d))=f(n)*f(m) f(nm)=dnmφ(d)=(dnφ(d))(dmφ(d))=f(n)f(m)
f ( n ) f(n) f(n)是积性函数。对于 f ( p m ) f(p^m) f(pm)(p是质数)
f ( p m ) = ∑ d ∣ p m φ ( d ) = φ ( 1 ) + φ ( p ) + φ ( p 2 ) + . . . + φ ( p n ) f(p^m)=\sum_{d|p^m}\varphi(d)=\varphi(1)+\varphi(p)+\varphi(p^2)+...+\varphi(p^n) f(pm)=dpmφ(d)=φ(1)+φ(p)+φ(p2)+...+φ(pn)
是一个等比数列求和+1,答案是 p m p^m pm,所以 f ( n ) = Π i = 1 m f ( p i c i ) = Π i = 1 m p i c i = n f(n)=\Pi _{i=1}^{m}f(p_i^{c_i})=\Pi_{i=1}^mp_i^{c_i}=n f(n)=Πi=1mf(pici)=Πi=1mpici=n
证明了一大堆,那么怎么求政客和军人,用数组f[i][0]表示前i个数挑出政客的答案和,f[i][1]表示前i个数挑出军人的答案和。初值就是 f [ 1 ] [ 0 ] = 1 或 f [ 0 ] [ 0 ] = 1 ( 质 因 数 含 2 或 不 含 2 ) f[1][0]=1或f[0][0]=1(质因数含2或不含2) f[1][0]=1f[0][0]=1(22)
dp,状态转移方程: f [ i ] [ 0 ] = f [ i − 1 ] [ 0 ] + f [ i − 1 ] [ 1 ] ∗ ( p − 1 ) f[i][0]=f[i-1][0]+f[i-1][1]*(p-1) f[i][0]=f[i1][0]+f[i1][1](p1)
f [ i ] [ 1 ] = f [ i − 1 ] [ 1 ] + f [ i − 1 ] [ 0 ] ∗ ( p − 1 ) f[i][1]=f[i-1][1]+f[i-1][0]*(p-1) f[i][1]=f[i1][1]+f[i1][0](p1)
PS: φ ( p ) = p − 1 ∣ p 是 质 数 \varphi(p)=p-1|p是质数 φ(p)=p1p在求M的时候要快速幂(程序中数组开了滚动数组)


代码

#include <cstdio>
#include <cctype>
#define mod 10000
using namespace std;
int p,e,f[2][2],m=1,n;
int in(){
	int ans=0; char c=getchar();
	while (!isdigit(c)) c=getchar();
	while (isdigit(c)) ans=ans*10+c-48,c=getchar();
	return ans;
}
int ksm(int x,int y){
	int ans=1;
    while (y){
    	if (y&1) ans=(ans*x)%mod;
    	x=(x*x)%mod; y>>=1;
	}
	return ans;
}
int main(){
	n=in(); p=in(); e=in();
	m=m*ksm(p,e)%mod; 
	if (p==2) f[1][0]=1; 
	else {
	    f[0][0]=1;
	    f[1][0]=(f[0][0]+f[0][1]*(p-1)%mod)%mod;
		f[1][1]=(f[0][1]+f[0][0]*(p-1)%mod)%mod;
	}
	for (int i=2;i<=n;i++){
		p=in();e=in(); m=m*ksm(p,e)%mod;
		f[i&1][0]=(f[~-i&1][0]+f[~-i&1][1]*(p-1)%mod)%mod;
		f[i&1][1]=(f[~-i&1][1]+f[~-i&1][0]*(p-1)%mod)%mod;
	}
	f[n&1][0]--; m-=(1+f[n&1][0]+f[n&1][1]);
	return !printf("%d\n%d\n%d",f[n&1][0],f[n&1][1],(m%mod+mod)%mod);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值