51nod 1445:变色DNA 最短路变形

有一只特别的狼,它在每个夜晚会进行变色,研究发现它可以变成N种颜色之一,将这些颜色标号为0,1,2...N-1。研究发现这只狼的基因中存在一个变色矩阵,记为colormap,如果colormap i i j j='Y'则这只狼可以在某一个夜晚从颜色i变成颜色j(一晚不可以变色多次),如果colormap i i j j=‘N’则不能在一个晚上从i变成j色。进一步研究发现,这只狼每次变色并不是随机变的,它有一定策略,在每个夜晚,如果它没法改变它的颜色,那么它就不变色,如果存在可改变的颜色,那它变为标号尽可能小的颜色(可以变色时它一定变色,哪怕变完后颜色标号比现在的大)。现在这只狼是颜色0,你想让其变为颜色N-1,你有一项技术可以改变狼的一些基因,具体说你可以花费1的代价,将狼的变色矩阵中的某一个colormap i i j j='Y'改变成colormap i i j j='N'。问至少花费多少总代价改变狼的基因,让狼按它的变色策略可以从颜色0经过若干天的变色变成颜色N-1。如果一定不能变成N-1,则输出-1. 
Input
多组测试数据,第一行一个整数T,表示测试数据数量,1<=T<=5 
每组测试数据有相同的结构构成: 
每组数据第一行一个整数N,2<=N<=50。 
之后有N行,每行N个字符,表示狼的变色矩阵,矩阵中只有‘Y’与‘N’两种字符,第i行第j列的字符就是colormap i i j j
Output
每组数据一行输出,即最小代价,无解时输出-1。
Sample Input
3
3
NYN
YNY
NNN
8
NNNNNNNY
NNNNYYYY
YNNNNYYN
NNNNNYYY
YYYNNNNN
YNYNYNYN
NYNYNYNY
YYYYYYYN
6
NYYYYN
YNYYYN
YYNYYN
YYYNYN
YYYYNN
YYYYYN
Sample Output
1
0

-1

模板题。

代码如下:

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int dis[101][101];
int dis1[100001];
char a[100000];
int book[100001];
int inf=0x3f3f3f3f;
int main()
{
    int n,i,j,m,v;
    scanf("%d",&n);
    while(n--)
    {
        memset(dis1,0,sizeof(dis1));
        memset(book,0,sizeof(book));
        scanf("%d",&m);
        for(i=0;i<m;i++)
        {
            for(j=0;j<m;j++)
            {
                dis[i][j]=0x3f3f3f3f;
            }
        }
        for(i=0; i<m; i++)
        {
            int  tot=0;
            scanf("%s",a);
            for(j=0; j<m; j++)
            {
                if(a[j]=='Y')
                {
                    dis[i][j]=tot++;
                }
            }
        }
//        for(i=0;i<m;i++)
//        {
//            for(j=0;j<m;j++)
//            {
//                printf("%d ",dis[i][j]);
//            }
//            printf("\n");
//        }
        int min1,u=0;
        for(i=0;i<m;i++)
        {
            dis1[i]=dis[0][i];
        }
        for(i=0;i<m-1;i++)
        {
            min1=inf;
            for(j=0;j<m;j++)
            {

                if(book[j]==0&&dis1[j]<min1)
                {
                    min1=dis1[j];
                     u=j;
                }
          }

            book[u]=1;
            for(v=0;v<m;v++)
            {//printf("%d\n",v);
               // printf("1");
                if(dis[u][v]<inf)
                {
                    if(dis1[v]>dis[u][v]+dis1[u])
                        dis1[v]=dis[u][v]+dis1[u];
                }
            }
        }
        if(dis1[m-1]>=inf)
        {
            printf("-1\n");
        }
        else
        {
            printf("%d\n",dis1[m-1]);
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值