二分查找算法

 二分查找算法是在有序数组中用到的较为频繁的一种算法,在未接触二分查找算法时,最通用的一种做法是,对数组进行遍历,跟每个元素进行比较,其时间为O(n).但二分查找算法则更优,因为其查找时间为O(lgn),譬如数组{1, 2, 3, 4, 5, 6, 7, 8, 9},查找元素6,用二分查找的算法执行的话,其顺序为:
    1.第一步查找中间元素,即5,由于5<6,则6必然在5之后的数组元素中,那么就在{6, 7, 8, 9}中查找,
    2.寻找{6, 7, 8, 9}的中位数,为7,7>6,则6应该在7左边的数组元素中,那么只剩下6,即找到了。

    二分查找算法就是不断将数组进行对半分割,每次拿中间元素和goal进行比较。

【时间复杂度:O(logN)---树的高度】

#include <iostream>
using namespace std;

//二分查找
int binary_search(int* a, int len, int goal);

int main()
{
        const int LEN  = 10000;
        int a[LEN];
        for (int i = 0; i < LEN; i++)
        a[i] = i - 5000;
        int target = 0;
        int index = binary_search(a, LEN, target);

        if (index != -1)
        cout<<target<<"在数组中的下标为"<<index<<endl;
        else
        cout<<"不存在"<<target<<endl;
        return 0;
}

int binary_search(int* a, int len, int goal)
{
        int low = 0;
        int high = len -1;
        while (low <= high)
    {
                int middle = (high - low) / 2 + low; // 直接使用(high + low) / 2 可能导致溢出
                if (a[middle] == goal)
                        return middle;
                //在左半边
        else if (a[middle] > goal)
            high = middle - 1;
                //在右半边
        else
            low = middle + 1;
    }
        //没找到
    return -1;
}

转自:http://www.cnblogs.com/shuaiwhu/archive/2011/04/15/2065062.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值