A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<=100) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format "left_index right_index", provided that the nodes are numbered from 0 to N-1, and 0 is always the root. If one child is missing, then -1 will represent the NULL child pointer. Finally N distinct integer keys are given in the last line.
Output Specification:
For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.
Sample Input:9 1 6 2 3 -1 -1 -1 4 5 -1 -1 -1 7 -1 -1 8 -1 -1 73 45 11 58 82 25 67 38 42
Sample Output:58 25 82 11 38 67 45 73 42
#include <iostream> #include <string> #include <vector> #include <memory.h> #include <algorithm> #include <queue> using namespace std; struct TreeNode { int val; TreeNode *left; TreeNode *right; } tree[110]; vector<int> vec; vector<int> ans; queue<TreeNode *> Q; void levelOrder(TreeNode *root) { Q.push(root); vec.clear(); while(!Q.empty()) { TreeNode *node = Q.front(); Q.pop(); if(node != NULL) { vec.push_back(node->val); Q.push(node->left); Q.push(node->right); } } } void inOrder(TreeNode *root) { if(root != NULL) { inOrder(root->left); vec.push_back(root->val); inOrder(root->right); } } int main() { int n, node[110], root = -1; cin >> n; memset(node, 0, sizeof(node)); for (int i = 0; i < n; ++i) { int a, b; cin >> a >> b; tree[i].val = i; if(a == -1) { tree[i].left = NULL; } else { tree[i].left = &(tree[a]); node[a] = 1; } if(b == -1) { tree[i].right = NULL; } else { tree[i].right = &(tree[b]); node[b] = 1; } } for (int i = 0; i < n; ++i) { int tmp; cin >> tmp; ans.push_back(tmp); } for (int i = 0; i < n; ++i) { if(node[i] == 0) { root = i; break; } } inOrder(&(tree[root])); sort(ans.begin(), ans.end()); for (int i = 0; i < vec.size(); ++i) { tree[vec[i]].val = ans[i]; } levelOrder(&(tree[root])); for (int i = 0; i < vec.size(); ++i) { if(i == 0) { cout << vec[i]; } else { cout << " " << vec[i]; } } cout << endl; return 0; }