(单源最短路径 Dijkstra)【AOJ】Graph II - Single Source Shortest Path

题目链接:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ALDS1_12_B

/*
* @Author: Samson
* @Date:   2018-06-14 09:42:05
* @Last Modified by:   Samson
* @Last Modified time: 2018-06-14 10:11:15
*/
//   @URL : http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ALDS1_12_B
#include<bits/stdc++.h>
#include<algorithm>
#include <cstdlib>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long LL;
const int MAXN = 1e3+10;

int a[MAXN][MAXN],n,d[MAXN],color[MAXN];

void dijkstra()
{
	memset(color,0,sizeof color);
	memset(d,INF,sizeof d);
	int s = 0,u,minv;
	d[s] = 0;
	while(1)
	{
		minv = INF;
		u = -1;
		for(int i = 0; i < n; ++i)
		{
			if(!color[i] && d[i] < minv)
				minv = d[i], u = i;
		}
		if(u == -1)	break;
		color[u] = 1;
		for(int v = 0; v < n; ++v)
		{
			if(!color[v] && a[u][v]!=INF)
			{
				if(d[u]+a[u][v] < d[v])
					d[v] = d[u]+a[u][v];
			}
		}
	}
	for(int i = 0; i < n; ++i)
		cout<<i<<' '<< (d[i]==INF?-1:d[i])<<'\n';
}
int main(void)
{
	ios::sync_with_stdio(false); 
	//cin.tie(0);
	int u,v,k,w;
	memset(a,INF,sizeof a);
	cin>>n;
	for(int i = 1; i <= n; ++i)
	{
		cin>>u>>k;
		for(int j = 1; j <= k; ++j)
		{
			cin>>v>>w;
			a[u][v] = w;
		}
	}
	dijkstra();
	return 0;
}


优先队列二叉堆优化

/*
* @Author: Samson
* @Date:   2018-06-14 14:39:51
* @Last Modified by:   Samson
* @Last Modified time: 2018-06-14 15:11:56
*/
//   @URL : http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ALDS1_12_B
#include<bits/stdc++.h>
#include<algorithm>
#include<queue>
#include <cstdlib>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long LL;
const int MAXN = 1e5+10;

int n,color[105],d[105];
vector<pair<int,int> > a[105];

void dijkstra()
{
	priority_queue<pair<int,int>,vector<pair<int,int> >,greater<pair<int,int> > > que;
	memset(color,0,sizeof color);
	memset(d,INF,sizeof d);
	d[0] = 0;
	que.push(make_pair(0,0));
	while(que.size())
	{
		pair<int,int> p = que.top();
		que.pop();
		int u = p.second;
		color[u] = 1;

		if(d[u] < p.first)	continue;

		for(int i = 0; i < a[u].size(); ++i)
		{
			int v = a[u][i].first;
			if(color[v])	continue;
			if(d[v] > d[u]+a[u][i].second)
			{
				d[v] = d[u]+a[u][i].second;
				que.push(make_pair(d[v],v));
			}
		}
	}
	for(int i = 0; i < n; ++i)
		cout<<i<<' '<< (d[i]==INF?-1:d[i])<<'\n';
}
int main(void)
{
	ios::sync_with_stdio(false); 
	//cin.tie(0);
	cin>>n;
	int u,k,v,w;
	for(int i = 0; i < n; ++i)
	{
		cin>>u>>k;
		for(int j = 0; j < k; ++j)
		{
			cin>>v>>w;
			a[u].push_back(make_pair(v,w));
		}
	}
	dijkstra();
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值