机器学习进阶
文章平均质量分 61
Zero_to_zero1234
Be objective
展开
-
Tensorflow加载预训练模型的特殊操作
本文转载自:https://blog.csdn.net/huachao1001/article/details/110957491?spm=1001.2014.3001.5501本文介绍一些不常规的操作:如何只加载部分参数? 如何从两个模型中加载不同部分参数?当预训练的模型的命名与当前定义的网络中的参数命名不一致时该怎么办?1 只加载部分参数举个例子,对已有的网络结构做了细微修改,例如只改了几层卷积通道数。如果从头训练显然没有finetune收敛速度快,但是模型又没法全部加载。此时,只需将未修转载 2021-05-15 17:22:47 · 298 阅读 · 0 评论 -
深入理解tensorflow的基本概念:Graph、Operation、Tensor、Node的区别
随着对Tensorflow的不断深入使用,愈加觉得对Tensorflow设计理念和细节了解越多越有好处,特写一篇总结方便后续回顾和后续进一步深入学习声明,以下内容主要参考两篇精品博客,推荐有空可以好好读一下:以线性回归为例,深入理解tensorflow的Operation、Tensor、Node的区别Tensorflow基本概念一、概念总述深度学习(神经网络)之所以具备智能,就是因为它具有反馈机制。深度学习具有一套对输出所做的评价函数(损失函数),损失函数在对神经网络做出评价后,会通过某种方式(梯转载 2021-05-15 17:20:43 · 1702 阅读 · 0 评论 -
详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解
转载一篇文章,写得很好:详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解部分重要内容:有人对此评论:转载 2021-05-07 19:23:12 · 195 阅读 · 0 评论 -
tf2常用api总结(持续更新)
本文主要对NLP和TTS中常用到的tensorflow2部分api进行总结和记录,熟能生巧!一、tensor相关操作1、tf.reshapetf.reshape(tensor, shape, name=None)重新构造向量形状原创 2020-07-22 18:02:04 · 755 阅读 · 0 评论 -
简单记录梯度反转:Gradient Reversal Layer
参考知乎文章:https://www.zhihu.com/question/266710153, https://blog.csdn.net/qq_30091945/article/details/104478550#commentBox后续对 VAE和GAN有更深入的理解,再进行扩展和补充转载 2020-07-20 14:16:11 · 2685 阅读 · 0 评论 -
深度学习论文专栏
深度学习论文专栏以下,建立论文阅读专栏,一是为提高论文阅读能力,二是为保证知识更新,三是为了记录和传播好的论文思想以下仅做粗浅分类,方便查阅一、NLP1、Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention 【https://arxiv.org/pdf/2006.16236.pdf】2020新作待读二、语音1、三、其他1、...原创 2020-06-30 11:56:03 · 880 阅读 · 0 评论 -
迁移学习之Domain Adaptation
关于迁移学习的两篇文章,先简单记录一下,后面再进行补充https://chenrudan.github.io/blog/2017/12/15/domainadaptation1.htmlhttps://blog.csdn.net/weixin_37993251/article/details/89398433原创 2020-06-05 10:53:46 · 1357 阅读 · 0 评论 -
机器学习进阶之概率论(1)
机器学习的主体知识是概率论及优化理论,那么最近通过学堂在线清华大学概率论与数理统计知识,重新学习、巩固概率论基础,为后续进阶学习打下基础,此文对学习的重点知识进行记录和总结:一、独立与互不相容的概念区分1、两两独立和互不相容的概念:2、那么三个事件相互独立必须两两独立,且P(ABC)=P(A)P(B)P©,可以用下面例子充分说明3、事件独立和不相容(互斥的概念区分实例)...原创 2019-12-12 14:14:49 · 576 阅读 · 0 评论