conda 如何创建、查看、删除py的虚拟环境:
(补充前置,如果没有anaconda)
linux安装miniconda
参考:https://blog.csdn.net/suiyueruge1314/article/details/126705416?spm=1001.2014.3001.5502
conda国内源配置
可参考:https://blog.csdn.net/suiyueruge1314/article/details/105124806
1、创建虚拟环境:
Anaconda创建环境:
比如,创建pyhon=3.6的版本环境取名叫 nlp
conda create -n nlp python=3.6
2、删除虚拟环境操作:(谨慎操作)
conda remove -n nlp --all
3、激活环境
conda activate nlp
如果发现进不去,那么
先:
source activate nlp
再
conda activate nlp
# 查看python版本
python --version
4、查看环境下已有的安装包:
conda list
效果如下
在进入虚拟环境的情况下,安装对应包
直接
pip install xxxx 或者 conda install xxxx
如:
pip install tensorflow
注意
:此环境下的安装包在退出虚拟环境后无法使用
的
5、退出当前虚拟环境:
conda deactivate
补充:Linux下查看已有虚拟环境:
conda-env list
提醒:有时候遇到过几次异常,所以开启完虚拟环境后最好使用命令
which python
判断编译器位置最为稳妥(nlp是虚拟环境名),有一个home/anaconda/envs/nlp/bin/python
如果发现没有在 anaconda/envs
的虚拟环境(nlp) 下,则多次使用
conda deactivate
先退出当前环境,然后再重新使用 source activate xxxx
进入环境
6、重命名环境
conda 其实没有重命名指令,实现重命名是通过 clone 完成的,分两步:
①先 clone 一份 new name 的环境
②删除 old name 的环境
如,将nlp
重命名成tf2
conda create -n tf2 --clone nlp
删除原环境
conda remove -n nlp --all
7、conda导出和使用 .yaml 环境配置文件
参考自:https://blog.csdn.net/ft_sunshine/article/details/92215164
https://zhuanlan.zhihu.com/p/586560032
① conda导出已有环境,环境会被保存在environment.yaml文件中。
conda env export > environment.yaml
② 当我们想再次创建该环境,或根据别人提供的.yaml文件复现环境时,就可以通过下面的命令来复现安装环境了。
conda env create -f environment.yaml
注:.yaml文件移植过来的环境只是安装了你原来环境里用conda install等命令直接安装的包,你用pip之类装的东西没有移植过来,需要你重新安装。
pip 导出 requirements
第一种: pip freeze > requirements.txt
这种情况导出的环境可能含有文件路径。
第二种: pip list --format=freeze > requirements.txt
这样导出的requirements.txt,不会含有文件路径。
第三种, 若要导出离线包到指定文件夹
pip download -r requestments.txt -d ./pip_packages
#从当前环境的网络中下载requestments.txt中写的包,下载到当前目录下的pip_packages目录中,这时候你会发现,里面有很多依赖,还有一些whl文件