自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(79)
  • 收藏
  • 关注

原创 特别分享:LangChain——构建强大LLM应用的“万能胶水”

如果你最近涉足大语言模型领域,那么 **LangChain** 这个名字一定会如雷贯耳。它被誉为构建LLM应用的“最强框架”,但它的本质究竟是什么?我们为何需要它?又该如何使用它?本文将带你拨开迷雾,深入浅出地理解LangChain。

2025-09-28 23:32:41 345

原创 特别分享:关于Pipeline

前言:讲解pipeline。

2025-09-28 23:18:29 182

原创 NLP:讲解Bert模型的变体

前言:在上一篇《详解Bert模型》中,我们了解了BERT如何凭借双向Transformer和预训练-微调范式革新了自然语言处理领域。但故事并未结束。BERT的成功点燃了研究社区的热情,催生出了一个庞大而充满活力的“BERT家族”。这些变体针对BERT的某些局限性,或在特定方向上进行优化,推动了NLP技术的边界。

2025-09-27 22:15:30 951

原创 NLP:关于Bert模型的基础讲解

前言:在人工智能领域,尤其是在自然语言处理(NLP)的世界里,2018年是一个值得铭记的年份。这一年,谷歌发布了一款名为**BERT**的模型,它如同一颗重磅炸弹,瞬间刷新了11项NLP任务的性能记录,将机器对语言的理解能力提升到了一个前所未有的高度。

2025-09-27 21:53:59 701

原创 特别分享:怎么用coze搭建智能体?

前言:用 “扣子”(Coze)搭建智能体就像 “搭乐高” 一样简单有趣。它是一个零代码、可视化的AI智能体开发平台,让你无需编写复杂代码,就能快速构建具备强大能力的AI助手。

2025-09-21 23:03:33 566

原创 NLP:详解FastText

前言:你是否曾被文本分类问题困扰?是否觉得训练词向量模型既耗时又耗资源?今天,我们来深入探讨一个由 Facebook AI Research (FAIR) 开发的强大工具——FastText。它不仅在速度上快如闪电,在效果上也丝毫不逊色,堪称 NLP 领域的“瑞士军刀”。

2025-09-21 22:43:44 724

原创 NLP:Transformer优势详解

前言:Transformer,这一在人工智能领域掀起惊涛骇浪的架构,自2017年谷歌团队发表《Attention Is All You Need》论文诞生以来,便以迅雷不及掩耳之势席卷全球,成为AI发展史上浓墨重彩的一笔。它究竟有何魔力,能让全球开发者为之疯狂,让AI技术焕发新生?今天,就让我们一同揭开Transformer的神秘面纱,探寻其优势所在。

2025-09-20 22:10:10 739

原创 NLP:Transformer之多头注意力(特别分享4)

前言:今晚多分享一篇关于Transformer多头注意力的文。

2025-09-14 23:54:06 846

原创 NLP:Transformer之self-attention(特别分享3)

前言:之前讲解了Transformer各部分作用等等,本文分享self-attention。

2025-09-14 22:39:40 1202

原创 我的CSDN创作纪念日(*╹▽╹*)

志同道合的小伙伴,快来交流!!!

2025-09-06 12:14:37 931

原创 NLP:Transformer残差连接的作用(特别分享2)

前言:紧接着上文的Transformer各子模块作用分享,本文继续特别分享Transformer中残差连接(Residual Connection)的作用。

2025-08-24 16:37:09 869

原创 NLP:Transformer各子模块作用(特别分享1)

前言:Transformer 是深度学习领域的革命性架构,彻底改变了NLP的发展方向。前面分享了Transformer的大概构建思路,本文特别分享Transformer的各子模块作用。

2025-08-24 16:11:58 944

原创 NLP:Transformer模型构建

前言:前面讲解了Transformer的各个部分,本文讲解Transformer模型整体构建。

2025-08-16 23:04:22 323 2

原创 NLP:Transformer输出部分

前言:前文讲解了Transformer的解码器,本篇文章讲解Transformer的输出部分。

2025-08-09 22:50:26 378

原创 NLP:Transformer解码器

前言:前文讲解了Transformer编码器部分,本文讲解解码器部分。

2025-08-06 22:45:40 692

原创 NLP:Transformer编码器

前言:前文讲解了Transformer的输入部分,这篇文章讲解Transformer的编码器部分。

2025-08-02 00:17:47 613

原创 NLP:Transformer输入部分

前言:前文讲解了Transformer的诞生和基础结构,然后Transformer总体分为输入部分、输出部分、编码器和解码器部分,而本文讲解Transformer的输入部分。

2025-07-30 00:01:14 465

原创 NLP:Transformer背景介绍

前言:前面的文章讲解了RNN及其案例,这篇文章开始讲解Transformer,首先简单介绍Transformer。

2025-07-29 00:08:06 1302

原创 NLP:seqtoseq英译法案例

前言:前文分享了注意力机制,今天分享案例:seqtoseq英译法。

2025-07-22 01:11:09 349

原创 NLP:注意力机制及其分类

前言:前面分享了RNN,这篇文章开始讲解注意力机制。

2025-07-19 00:38:58 705

原创 NLP:人名分类器案例分享

前言:前面介绍了传统RNN、LSTM、GRU,本篇文章分享综合案例。

2025-07-18 00:29:03 1099

原创 NLP:LSTM和GRU分享

前言:前面文章分享了传统RNN,此次分享传统RNN变体:LSTM和GRU。

2025-07-16 22:25:42 2001

原创 NLP:RNN文本生成案例分享

前言:上篇文章讲解了RNN,这篇文章分享文本生成任务案例:文本生成是一种常见的自然语言处理任务,输入一个开始词能够预测出后面的词序列。本案例将会使用循环神经网络来实现周杰伦歌词生成任务。

2025-07-13 00:06:44 1068

原创 NLP:传统RNN模型

前言:前文介绍了RNN概念及其分类,本文讲解传统RNN。

2025-07-11 23:43:42 950

原创 NLP:初识RNN模型(概念、分类、作用)

前言:前面几篇文章讲解了NLP数据的基本处理,从这篇文章开始做NLP相关模型的普及。。。首先普及**RNN模型**。

2025-07-10 00:07:51 1686

原创 NLP:文本特征处理和回译数据增强法

前言:前文讲解了文本数据处理,这篇文章讲解NLP的文本特征处理。文本特征处理主要有 **添加n-gram特征** 和**文本长度规范**两种方式。

2025-07-07 22:54:49 661

原创 NLP:文本数据分析

前文分享了文本张量表示方法,这次分享文本数据分析。关于NLP的文本数据分析,主要是了解标签数量、句子长度、词频及词云等。全文以一数据集做依托分析说明。

2025-07-03 23:34:53 1108

原创 NLP:文本张量表示方法

前言:前文分享了NLP的数据处理的几种方式,本文讲解文本张量的表示方法。张量表示方法主要有三种:**one-hot编码、Word2vec、Word Embedding**,本文也主要介绍这三种方法。

2025-07-02 23:13:49 1365

原创 NLP:文本预处理

前面简单介绍了NLP,这篇文章分享NLP前期文本预处理的几种方式。

2025-07-01 00:25:29 1205

原创 自然语言处理:NLP入门

从本章开始讲解自然语言处理(NLP),今天先入个门~

2025-06-30 00:10:35 263

原创 深度学习:PyTorch卷积神经网络图像分类案例分享

此前分享了卷积神经网络相关知识,今天实战下:搭建一个卷积神经网络来实现图像分类任务。

2025-06-28 00:56:31 1286

原创 深度学习:PyTorch卷积神经网络(2)

前言:前文讲解了卷积神经网络(CNN)的基础知识和卷积层,这篇文章继续分享CNN的池化层知识。

2025-06-27 00:29:10 1312

原创 深度学习:PyTorch卷积神经网络(1)

**前言**:上篇文章讲解了图像,这篇文章正式进入卷积神经网络讲解。

2025-06-25 00:22:09 1292

原创 深度学习:PyTorch卷积神经网络之图像入门

CNN(Convolutional Neural Network,卷积神经网络)是一种专门用于处理网格结构数据(如图像、音频、文本序列)的深度学习模型。它在计算机视觉(CV)和自然语言处理(NLP)中广泛应用,尤其在图像分类、目标检测、语义分割等任务中表现优异。但在此之前,我们需要先了解图像,简单来说,图像一般分为二值图像、灰度图像、索引图像和真彩色RGB图像。

2025-06-24 00:01:03 193

原创 深度学习:PyTorch人工神经网络优化方法分享(2)

前言:上一篇文章讲解了部分人工神经网络优化方法,这篇文章接着讲述从学习率角度出发的优化方法和其它方法。

2025-06-22 21:29:59 1318

原创 深度学习:PyTorch人工神经网络优化方法分享(1)

**前言**:前面讲述了PyTorch人工神经网络的激活函数、损失函数等内容,今天讲解优化方法。简单来说,优化方法主要是从两个角度来入手,一个是**梯度**,一个是**学习率**。

2025-06-22 01:45:11 1311

原创 深度学习:Pytorch人工神经网络之损失函数

smooth L1说的是光滑之后的L1,是一种结合了均方误差(MSE)和平均绝对误差(MAE)优点的损失函数。:与MAE相比,Smooth L1在小误差时表现得像MSE,避免了在训练过程中因使用绝对误差而导致的梯度不连续问题(影响模型的收敛性和稳定性)。:当误差较大时,损失函数会线性增加(而不是像MSE那样平方增加),因此它对离群点的惩罚更小,避免了MSE对离群点过度敏感的问题;在多分类任务通常使用softmax将logits(输出值)转换为概率的形式,所以多分类的交叉熵损失也叫做。

2025-06-20 00:42:53 1493

原创 深度学习:PyTorch人工神经网络之参数初始化和神经网络搭建

前言:前一篇文章我们讲解了人工神经网络的激活函数,接下来讲解参数初始化和损失函数。

2025-06-18 23:15:52 1204

原创 深度学习:PyTorch人工神经网络之激活函数

前言:前面讲解了人工神经网络基础,带大家在人工神经网络领域入了门。今天继续分享神经网络相关知识点—激活函数(将神经网络前向传播内部状态值转化为激活值的函数)。

2025-06-18 00:15:30 991

原创 深度学习:人工神经网络基础概念

人工神经网络(Artificial Neural Network, 简写为ANN)也简称为神经网络(NN),是一种模仿生物神经网络结构和功能的计算模型。它由多个互相连接的人工神经元(也称为节点)构成,可以用于处理和学习复杂的数据模式,尤其适合解决非线性问题。人工神经网络是机器学习中的一个重要模型,尤其在深度学习领域中得到了广泛应用。人脑可以看做是一个生物神经网络,由众多的神经元连接而成。各个神经元传递复杂的电信号,树突接收到输入信号,然后对信号进行处理,通过轴突输出信号。

2025-06-17 00:03:10 569

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除