Sort algorithm

Merge Sort / Insertion Sort/ bubble sort/ selection sort

#include <iostream>

using namespace std;

int CUTOFF = 7;
int arrAux[7];
void swap(int *xp, int *yp)
{
    int temp = *xp;
    *xp = *yp;
    *yp = temp;
}

// A function to implement bubble sort
void bubbleSort(int arr[], int n)
{
   int i, j;
   for (i = 0; i < n-1; i++)      
 
       // Last i elements are already in place   
       for (j = 0; j < n-i-1; j++) 
           if (arr[j] > arr[j+1])
              swap(&arr[j], &arr[j+1]);
}

void insertionSort(int arr[], int n)
{
    for (int i = 0; i < n-1; i++)
    {
        for (int j = i+1; j > 0; j--)
        {
            if (arr[j] < arr[j-1])
                swap(&arr[j], &arr[j-1]);
        }
    }
}

void selectionSort(int arr[], int n)
{
    
    for (int i = 0; i < n; i++)
    {
        int min_index = i;
        for (int j = i+1; j < n; j++)
        {
            if (arr[min_index] > arr[j])
                min_index = j;
        }
        swap(&arr[i], &arr[min_index]);
    }
    
}

void merge(int* arr, int low, int mid, int high)
{
    int p = low;
    int q = mid+1;
    for (int i = low; i <= high; i++)
    {
        arrAux[i] = arr[i];
    }
    
    for (int i = low; i <= high; i++)
    {
        if (p > mid)
            arr[i] = arr[q++];
        else if (q > high)
            arr[i] = arrAux[p++];
        else if (arrAux[p] > arrAux[q])
        {
            arr[i] = arrAux[q++];
        }
        else
        {
            arr[i] = arrAux[p++];
        }
    }
}

void Mergesort(int arr[], int low, int high)
{
    // Imporvement #1 : using insertion sort for smaller array
    if (high < low + CUTOFF - 1)
    {
        insertionSort(arr, high-1);
    }
    if (low >= high)
        return;
    int mid = (low + high)/2;
    Mergesort(arr, low, mid);
    Mergesort(arr, mid+1, high);
    // Improvement #2 : Stop if it is alrady sorted
    if (arr[mid+1] > arr[mid])
        return;
    merge(arr, low, mid, high);
}

/* Function to print an array */
void printArray(int arr[], int size)
{
    int i;
    for (i=0; i < size; i++)
        printf("%d ", arr[i]);
    //printf("n");
}

int main()
{
    //int arr[] = {64, 34, 25, 12, 22, 11, 90};
    int arr[] = {64, 34, 25, 12, 22, 11, 90, 2, 23, 39, 89, 88, 123, 10};
    int n = sizeof(arr)/sizeof(arr[0]);
    //selectionSort(arr, n);
    Mergesort(arr, 0 , n-1);
    printf("Sorted array: \n");
    printArray(arr, n);
    return 0;
}


Merge sort variants ---- Count of inversion

#include <iostream>

using namespace std;
#define ARRARY_SIZE 10

int aux[ARRARY_SIZE] = {};

int count_inversion_merge(int* a, int first, int mid, int last)
{
    int p1 = first;
    int p2 = mid+1;
    int count = 0;
    
    for (int i = first; i <= last; i++)
    {
        aux[i] = a[i];
    }

    for (int i = first; i <= last; i++)
    {
        if (p1 > mid)
        {
            a[i] = aux[p2++];
        }
        else if (p2 > last)
        {
            a[i] = aux[p1++];
        }
        else if( aux[p1] > aux[p2])
        {
            a[i]  = aux[p2++];
            count += (mid - p1 + 1);
        }
        else
        {
            a[i] = aux[p1++];
        }
    }
    return count;
}

int count_inversion(int* a, int first, int last)
{
    int counter = 0;
    if (first >= last)
        return 0;
    int mid = (first + last) / 2;
    
    int c1 = count_inversion(a, first, mid);
    int c2 = count_inversion(a, mid+1, last);
    int c3 = count_inversion_merge(a, first, mid, last);
    
    return c1+c2+c3;
}


int main()
{
    int a[] = {9, 8 , 7, 6, 5, 4, 3, 2, 1, 10};
    static_assert(sizeof(a)/sizeof(int) == ARRARY_SIZE, "The arrary size doesn't match");
    int len = ARRARY_SIZE;
    int inversion = count_inversion(a, 0, len-1);
    int i;

    for (i=0 ; i<len; i++)
            printf("%d ", a[i]);
    printf("\n");

    printf("Total inversions : %d \n", inversion);
            
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值