头疼的算法与数据结构——八皇后问题(递归法)

   介绍


八皇后问题是一个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行、纵行或斜线上。八皇后问题可以推广为更一般的n皇后摆放问题:这时棋盘的大小变为n×n,而皇后个数也变成n。当且仅当 n = 1 或 n ≥ 4 时问题有解。

八皇后问题最早是由国际西洋棋棋手马克斯·贝瑟尔于1848年提出。之后陆续有数学家对其进行研究,其中包括高斯和康托,并且将其推广为更一般的n皇后摆放问题。八皇后问题的第一个解是在1850年由弗朗兹·诺克给出的。诺克也是首先将问题推广到更一般的n皇后摆放问题的人之一。1874年,S.冈德尔提出了一个通过行列式来求解的方法,这个方法后来又被J.W.L.格莱舍加以改进。

艾兹格·迪杰斯特拉在1972年用这个问题为例来说明他所谓结构性编程的能力。

八皇后问题出现在1990年代初期的著名电子游戏第七访客中。


思路分析


其实该问题并不难,利用递归方法很容易解决。没放置一个皇后,就将其能够攻击的区域进行标记,然后放置下一个皇后,一次类推……;此外,如果有解最终肯定是每一行有且只有一位皇后,所以放置的时候按照逐行放置的顺序进行。此问题难点在于如何把控递归函数的返回条件,一种条件是8个皇后放置完成后,返回成功,一种条件是该行中已经没有可以放置的位置,此时返回失败,需要重新放置。此时要额外注意,所谓的“重新放置”指的并不是将所有皇后清除重新来过,而是只返回上一层,将上一个导致本次放置失败的皇后进行清除,然后重新更新其位置,通过逐级放置、或逐级回溯可以达到遍历所有情况找到所有解(下文中给出的自己的代码的计算结果不是独立解的个数,而是所有可行解的情况)


实现

1.穷举法代码:

/*
名称:八皇后问题
编写:sun_tw
日期:2017/04/13
*/
#include <stdio.h>
int count=0;

int notDanger(int row,int j,int (*chess)[8])
{
    int i,k,flag1=0,flag2=0,flag3=0,flag4=0,flag5=0;
    //判断列方向是否危险
    for(i=0;i<8;i++)
    {
        if(*(*(chess+i)+j)!=0)
        {
            flag1=1;
            break;
        }
    }

    //判断左上方
    for(i=row,k=j;i>=0&&k>=0;i--,k--)
    {
        if(*(*(chess+i)+k)!=0)
        {
            flag2=1;
            break;
        }
    }

    //判断右下方
    for(i=row,k=j;i<8&&k<8;i++,k++)
    {
        if(*(*(chess+i)+k)!=0)
        {
            flag3=1;
            break;
        }
    }

    //判断右上方
    for(i=row,k=j;i>=0&&k<8;i--,k++)
    {
        if(*(*(chess+i)+k)!=0)
        {
            flag4=1;
            break;
        }
    }

    //判断左下方
    for(i=row,k=j;i<8&&k>=0;i++,k--)
    {
        if(*(*(chess+i)+k)!=0)
        {
            flag5=1;
            break;
        }
    }
    if(flag1||flag2||flag3||flag4||flag5)
    {
        return 0;
    }
    else
    {
        return 1;
    }
}



//row:表示起始行
//n:表示列数
//(*chess)[8]:表示指向棋盘每一行的指针
void EightQueen(int row,int n,int (*chess)[8])
{
    int chess2[8][8],i,j;
    for(i=0;i<8;i++)
    {
        for(j=0;j<8;j++)
        {
            chess2[i][j]=chess[i][j];
        }
    }
    if(8==row)
    {
        printf("第%d种:\n",count+1);
        for(i=0;i<8;i++)
        {
            for(j=0;j<8;j++)
            {
                printf("%d ",*(*(chess2+i)+j));
            }
            printf("\n");
        }
        printf("\n");
        count++;
    }
    else
    {
        //判断这个位置是否有危险
        //如果没有危险,继续向下
        for(j=0;j<n;j++)
        {
            if(notDanger(row,j,chess))//判断是否危险
            {
                for(i=0;i<8;i++)
                {
                    *(*(chess2+row)+i)=0;
                }
                *(*(chess2+row)+j)=1;
                EightQueen(row+1,n,chess2);
            }
        }
    }
}

int main()
{
    int chess[8][8],i,j;
    for(i=0;i<8;i++)
    {
        for(j=0;j<8;j++) 
        {
            chess[i][j]=0;
        }
    }
    EightQueen(0,8,chess);
    printf("总共有%d种解决方法\n",count);
    return 0;
}

2.方法1的改进版:
#include <stdio.h>
#include <stdlib.h>

int q[20]={0};

void dispasolution(int n)
{
    static int count=0;
    int i;
    printf("第%d个解:",++count);
    for(i=1;i<=n;i++)
    {
        printf("(%d,%d)",i,q[i]);
    }
    printf("\n");
}

int place(int k,int j)
{
    int i=1;
    while(i<k)
    {
        if((q[i]==j)||(abs(q[i]-j)==abs(k-i)))
            return 0;
        i++;
    }
    return 1;
}

void queue(int k,int n)
{
    int j;
    if(k>n)
        dispasolution(n);
    else
        for(j=1;j<=n;j++)
        {
            if(place(k,j))
            {
                q[k]=j;
                queue(k+1,n);
            }
        }
}

int main()
{
    int n;
    printf("皇后问题(n<20)n=");
    scanf("%d",&n);
    if(n>20)
    {
        printf("值太大,不能求解\n");
    }
    else
    {
        printf("%d皇后问题求解如下:\n",n);
        queue(1,n);
        printf("\n");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值