洛谷P1115 最大子段和 (分治法)

本文介绍了如何运用分治法解决求给定序列的最大子段和问题。通过分析三种情况并递归计算左右子区间最大值,最终找到整个序列中的最大和。示例代码展示了具体的实现过程。
摘要由CSDN通过智能技术生成

题目描述

给出一个长度为 n 的序列 a,选出其中连续且非空的一段使得这段和最大。

输入格式

第一行是一个整数,表示序列的长度 n。

第二行有 n 个整数,第 i 个整数表示序列的第 i 个数字 ai​。

输出格式

输出一行一个整数表示答案。

输入输出样例

输入 #1

7
2 -4 3 -1 2 -4 3

输出 #1

4

说明/提示

样例 1 解释

选取 [3, 5] 子段 {3,−1,2},其和为 4。

数据规模与约定

  • 对于 40% 的数据,保证 n≤2×10^3。
  • 对于 100% 的数据,保证 1≤n≤2×10^5,−10^4≤ai​≤10^4。

这道题的方法有很多很多,dp可能是最先想到的,但是我最近看刘汝佳的紫书,刚好看到分治法这一部分,有个例子也和这题一样,我就用了刘汝佳的代码跑了跑这个题,用的是分治法,这是我一次用分治法的思想解题...,还是看了很半天,我个人的理解写在代码旁边了(不知道是不是这样的,可能不太严谨)

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;

const int maxn = 200000 + 5;
int A[maxn];//存数数组
int n;

/*

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值