①辗转相除法求最大公约数

辗转相除法又称为欧几里得算法,用于计算两个非负整数a和b的最大公约数(Greatest Common Divisor),简写为gcd,其计算的公式为gcd(a,b)=gcd(b,a%b)

辗转相除法正确性证明如下(参考百度百科):

证法1:

证明gcd(a,b)=gcd(b,a%b),不妨假设a>b,且r=a%b,且r!=0

设a=kb+r(a,k,b,r都为正整数且r!=0)

假设d是a和b的一个公约数,记作d|a,d|b,即a和b都可以被d整除

而r=a-kb,两边同时除以d有r/d=a/d-kb/d,因为d是a和b的一个公约数所以右式为整数,因此d/r也是整数,则d为r的一个公约数

因此d也是a%b的公约数(因为r是a%b)

因(a,b)和(b,a%b)公约数相等,所以最大公约数相等,所以原式得证。

证法2:(比1好理解,但是过程较长)

假设c=gcd(a,b),则存在m,n使得a=mc,b=nc;

令r=a%b,即存在k,使得r=a-kb=mc-knc;

故gcd(b,a%b)=gcd(b,r)=gcd(nc,mc-knc)=gcd(n,m-kn)*c;

则c为b和a%b的公约数;

假设d=gcd(n,m-kn),则存在x,y,使n=xd,m-kn=yd,故m=yd+kn=yd+kxd=(y+kx)d;

故有a=mc=(y+kx)dc,b=nc=xdc;可得gcd(a,b)=gcd((y+kx)dc,xdc)=dc;

由于gcd(a,b)=c,所以d=1;

即gcd(n,m-kn)=1;故可得gcd(b,a%b)=c;

故得证gcd(a,b)=gcd(b,a%b);

代码如下

int gcd(int a,int b)

{

        return a%b==0?b:gcd(b,a%b);

}

例题

UVA11417GCD

给定n,求

 

输入输出样例

输入 #1

10
100
500
0

输出 #1

67
13015
442011
import java.util.Scanner;

/**
 * @author Zzy
 * @create 2021-05-31 21:04
 */
public class Main {
    public static int gcd(int a,int b){
        return a%b==0?b:gcd(b,a%b);
    }
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        while(true){
            int n =scanner.nextInt();
            if(n==0)break;
            int sum = 0;
            for(int i=1;i<=n;i++){
                for(int j=i+1;j<=n;j++){
                    sum+=gcd(i,j);
                }
            }
            System.out.println(sum);
        }
    }
}

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值