做题链接.
/*
有点像 leetcode 70 爬楼梯 f(n) = f(n - 1) + f(n - 2)
本题:动态转移方程
输入: coins = [1, 2, 5], amount = 11
opt(11) = min(opt(11 - 1), opt(11 - 2), opt(11 - 5)) + 1
类推:opt(amount) = min(opt(amount - coins[coinsSize])) + 1
*/
int coinChange(int* coins, int coinsSize, int amount)
{
int *dp = (int *)malloc(sizeof(int) * (amount + 1));
for (int i = 0; i < amount + 1; i ++) {
dp[i] = amount + 1;
}
dp[0] = 0;
for (int i = 1; i <= amount; i++) {
//类比走楼梯,计算出每一阶楼梯所用的最少步数(如,走一阶,两阶,三阶,四阶,五阶...十一阶)
for (int j = 0; j < coinsSize; j++) {
if (i >= coins[j]) {
//选出opt(11) = min(opt(11 - 1), opt(11 - 2), opt(11 - 5)) + 1
//dp[ i - coins[j] ] + 1为当前走法(走1步或者2步或者5步)与之前存储的走法(走1步或者2步或者5步)相比较
dp[i] = fmin( dp[ i - coins[j] ] + 1, dp[i]);
}
}
}
//如果dp[amount] > amount的话,说明dp[amount]=amount+1,即怎么走都不能走到最后一步,返回-1
int ret = dp[amount] > amount ? -1 : dp[amount];
free(dp);
return ret;
}