前言:
有一些好写的题就不贴代码了,细节较多的再放上。
本篇文章为上期(收录题目 A–>N \text{A-->N} A–>N),题目较为基础,进阶题目放在下期讲解 (目前还在咕咕咕) 。
A题
非常简单的方程。
f i = min { f i − 1 + ∣ h i − h i − 1 ∣ , f i − 2 + ∣ h i − h i − 2 ∣ } f_i=\min \{f_{i-1}+|h_i-h_{i-1}|,f_{i-2}+|h_i-h_{i-2}|\} fi=min{
fi−1+∣hi−hi−1∣,fi−2+∣hi−hi−2∣},递推一下就行了。
B题
跟上一题方程几乎一样,只需要枚举一下 k k k 即可,时间复杂度 O ( n k ) O(nk) O(nk)。
C题
很简单的题,设 f i , j f_{i,j} fi,j 表示第 i i i 天做第 j j j 种活动能得到的最大幸福度,答案为 max j = 1 3 { f n , j } \max_{j=1}^{3}\{f_{n,j}\} maxj=13{ fn,j}。
初始化和转移很简单,就不说了。
D题
01 01 01 背包问题模版,不再细说。
E题
数据范围变了一下,体积很大,价值很小。我们的思维也跟着一起变,从价值入手,设 f i f_i fi 表示得到 i i i 价值的物品所需的最小重量,转移与 01 01 01 背包一样。
最后扫一遍 f f f 数组,若 f i ≤ W f_i\le W fi≤W,就可以更新最大值。
F题
求最长公共子序列,要求输出这个序列。
输出 dp \text{dp} dp 方案的套路就是记录该状态从哪转移过来,对于这道题也一样,记录 f i , j f_{i,j} fi,j 是由 f i − 1 , j , f i , j − 1 , f i − 1 , j − 1 f_{i-1,j},f_{i,j-1},f_{i-1,j-1} fi−1,j,fi,j−1,fi−1,j−1 的哪一种转移来,然后倒序输出即可。
#include<bits/stdc++.h>
using namespace std;
#define rd read()
#define ll long long
#define FOR(i,j,k) for(int i=j;i<=k;i++)
#define ROF(i,j,k) for(int i=j;i>=k;i--)
int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){
if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)) x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*f;
}
const int N=3010;
int n,m,f[N][N],x[N][N],y[N][N];
char a[N],b[N];
void print(int i,int j){
if(!i||!j) return;
print(i-x[i][j],j-y[i][j]);
if(a[i]==b[j]) cout<<a[i];
}
int