大话数据结构学习笔记二:算法

一 算法定义

算法是解决特定问题求解步骤的描述,在计算机中表现为指令的有限序列,并且每条指令表示一个或多个操作。

二 算法的特性:

1 输入输出:算法具有零个或者多个输入,至少有一个或者多个输出。

2 有穷性: 指算法在执行完有限的步骤之后,自动结束而不会出现无线玄幻,并且每个步骤都在可接受的时间内完成。

3 确定性:算法的每一个步骤都有确定的含义。

4 可行性:算法的每一步都必须是可行的,也就是说,每一步都能够通过执行有限次数完成。

三 算法设计的要求

1 正确性:算法的正确性是指算法至少应该有输入、输出、和加工处理无歧义性、能正确反映问题的需求、能够得到问题的正确答案。

2 可读性:苏娜法设计的另一个目的是为了便于阅读理解和交流。

3 健壮性:当输入数据不合法时,算法也能够做出相关处理,而不是产生异常或莫名其妙的结构。

4 时间效率高和存储量低

四 算法时间复杂度

1 定义:在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况来确定T(n)的数量级。算法的时间复杂度,记作:T(n)=O(f(n))。它表示随时间规模n的增大,算法执行的增长率和f(n)的增长率相同,称作算法的渐进时间复杂度,简称为时间负责度。

2 推到大O阶方法

1 用常数1取代运行时间中的所有加法常数。

2 在修改后的运行次数函数中,只保留最高阶项。

3 如果最高阶存存在且不是1,则去除与这个项相乘的常数,得到的结果就是大O阶。

3 常数阶:O(1)

int sum = 0, n=100;
sum=(1+n)*n/2;
printf("%d",sum)

4 线性阶:O(n)

int n=100,sum=0;
for(i=0;i<n;i++)
{
    sum+=i;
}

5 对数阶:O(logn)

int count=1;
int n=10000;
while(count<n)
{
    count*=2;
}

6 平方阶:O(n^{2})

int i ,j;
for(i=0;i<n;i++)
{
    for(j=0;j<n;j++)
    {
        /*时间复杂度为O(1)的程序步骤序列*/
    }
}

7常见的时间复杂度:

执行次数非正式术语
12O(1)常数阶
2n+3O(n)

线性阶

3 n^{2}+2n+1O(n^{2})平方阶
5logn+20O(logn)对数阶级
2n+3nlogn+19O(nlogn)nlogn阶
2^{n}O(2^{n})指数阶

8 算法空间复杂度

算法的空间复杂度通过计算算法所需要的存储空间实现,算法空间复杂度的计算公式记作:S(n)=O(f(n)),其中n为问题的规模。

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值