Python|Python基本数据类型

Python基本数据类型

  1. 字符串介绍

    字符串类型 str 是常用的数据类型之一,开发者可以使用引号(单引号或双引号)来创建字符串。创建python字符串的方法非常简单,只需为变量分配一个值即可。

    var1 = "Hello Python"
    var2 = 'Python Hello'
    
  2. 访问字符串中的值

    可以通过索引序号(序号从 0 开始)来读取字符串中的某个字符,“abcdef.[1]”取得的值是“b”。

    var01 = 'Python!'              #定义第1个字符串
    var02 = "Objective-C"           #定义第2个字符串
    print("var01[0]",var01[0])      #截取第1个字符串中的第1个字符
    print("var02[1:5]",var02[1:5])  #截取第2个字符串中的第2到第5个字符
    

    执行结果:

    image-20200805153427103

  3. 修改字符串

    可以修改字符串的值,并将其赋值给另一个变量。

    var1 = "Hello World!"           #定义一个字符串
    print("字符串:",var1)           #输出字符串初始值
    #截取原字符串中国呢的前6个字符与新字符串组合
    print("变身~,更新后的字符串是:",var1[:6]+'Python!')
    

    执行结果:

    image-20200805162731382

  4. 转义字符

    当需要在字符串中使用特殊字符时,需要使用到反斜杠“\”表示的转义字符。

    Python中常用的转义字符
    在这里插入图片描述

    在编码过程中,有时候需要显示具体的特殊字符,不想让转义字符生效,需要用到 r 和 R 来定义原始字符串。如果想在字符串中输出反斜杠“\”,需要使用“\”实现。

    print("今天天气\n很热了,")                 #普通换行
    print("我想吃\\大西瓜,")                  #显示一个反斜杠
    print("你们想吃吗?\'不想吃!\'")           #显示单引号
    print(r"\t\r")                          #显示原始数据
    

    执行结果:

    image-20200805164718705

  5. 格式化字符串

    在Python程序中,可以格式化输出不同格式的字符串,此功能可以借助字符串格式符“%”来实现。

    ​ Python 字符串格式化符号
    在这里插入图片描述

    #%s是格式化字符串
    #%d是格式化整数
    print("我的名字是%s,今年已经%d岁了!" % ('牛爸爸',28))
    

    执行结果:

    image-20200805170359884

  6. 字符串处理函数

    Python 常用的字符串处理函数
    在这里插入图片描述

    mystr = 'You build it, you run it.'                 #定义原始字符串
    print('source string is:',mystr)                    #显示原始字符串
    print('swapcase demo\t ',mystr.swapcase())          #大小写字母转换
    print('upper demo\t ',mystr.upper())                #全部转为大写字母
    print('lower demo\t ',mystr.lower())                #全部转为小写字母
    print('title demo\t ',mystr.title())                #将字符串中的单词首字母大写
    print('istitle demo\t ',mystr.istitle())            #检测是否为首字母大写
    print('islower demo\t ',mystr.islower())            #检测字符串是否均为
    print('capitalize demo\t ',mystr.capitalize())      #将字符串的第1个字母大写
    print('find demo\t ',mystr.find('u'))               #获得字符串中字符'u'的起始位置
    print('count demo\t ',mystr.count('a'))             #获得字符串中字符'a'的数目
    print('split demo\t ',mystr.split(' '))             #使用单引号分割字符串,以空格为界
    print('join demo\t ',' '.join('abcde'))             #连接字符串
    print('len demo\t ',len(mystr))                     #获取字符串长度
    

    执行结果:

    image-20200805181032276

  7. 数字类型

    数字类型Numbers 用于表示变量或对象的数值。从python 3开始,只支持int、float、bool、complex(复数)共计4种数字类型,删除了python 2 中的Long(长整数)类型。

    1. 整型

      整型(int)就是整数,没有小数点,包括正整数、负整数和零。在Python中可以使用如下格式表示不同进制的整数。
      0+“进制标志”+数字

      • 0o[00]数字:表示八进制整数,例如:0o24、0024
      • 0x[0X]数字:表示十六进制整数,例如:0x3f、0X3F
      • 0b[0B]数字:表示二进制整数,例如:0b101、0B101
      • 不带进制标志:表示十进制整数
      • 整型最大的功能是实现数学运算:加法、减法、乘法、除法、取余数、乘方
    2. 浮点型

      浮点型(float)由整数部分与小数部分组成,也可以使用科学计数法表示浮点型。

      整数和浮点数在计算机内部存储的方式是不同的,整数运算永远是精确的(除法也是精确的),而浮点数运算则可能会有四舍五入的误差。

      需要注意的是,只有浮点类型的数值才使用科学计数法表示。

    3. 布尔型

      布尔类型是表示逻辑值的简单类型,布尔型的取值只有True和False(首字母大写),分别表示逻辑上的“真”或“假”。

      程序中可以直接用True和False表示布尔值,也可以通过布尔运算计算出来。

      image-20200805190502525

      and、or、not运算(and运算是与运算,只有所有的操作数都为True时,and运算结果才是True)

      image-20200805190648230

      or运算是或运算(其中有一个操作数为True,or运算的结果就是True)

      image-20200805191311493

      not运算时非运算(单目运算符,能够实现相反的操作运行)

      image-20200805191437826

      条件判断应用中经常使用布尔型

      image-20200805191806492

    4. 复数型

      复数型(complex)由实数部分和虚数部分构成,可以用 a+bj 或者 complex(a,b)表示,复数的实部a和虚部b都是浮点型。

      int、float 和 complex 的对比
      在这里插入图片描述
      在这里插入图片描述

      执行结果:

      image-20200805212325222

92讲视频课+16大项目实战+源码+¥800元课程礼包+讲师社群1V1答疑+社群闭门分享会=99元   为什么学习数据分析?       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。       从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。    本课程共包含五大模块: 一、先导篇: 通过分析数据分析师的一天,让学员了解全面了解成为一个数据分析师的所有必修功法,对数据分析师不在迷惑。   二、基础篇: 围绕Python基础语法介绍、数据预处理、数据可视化以及数据分析与挖掘......这些核心技能模块展开,帮助你快速而全面的掌握和了解成为一个数据分析师的所有必修功法。   三、数据采集篇: 通过网络爬虫实战解决数据分析的必经之路:数据从何来的问题,讲解常见的爬虫套路并利用三大实战帮助学员扎实数据采集能力,避免没有数据可分析的尴尬。   四、分析工具篇: 讲解数据分析避不开的科学计算库Numpy、数据分析工具Pandas及常见可视化工具Matplotlib。   五、算法篇: 算法是数据分析的精华,课程精选10大算法,包括分类、聚类、预测3大类型,每个算法都从原理和案例两个角度学习,让你不仅能用起来,了解原理,还能知道为什么这么做。
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页