连号区间数 (蓝桥杯)

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/sun897949163/article/details/49737135

先上题

时间限制: 1 Sec 内存限制: 128 MB
提交: 18 解决: 6
[提交][状态][讨论版]
题目描述
小明这些天一直在思考这样一个奇怪而有趣的问题:

在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是:

如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的“连续”数列,则称这个区间连号区间。

当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助。

输入 每个测试点(输入文件)存在多组测试数据。

每个测试点的第一行为一个整数Task,表示测试数据的组数。

在一组测试数据中:

第一行是一个正整数N (1 <= N <= 10000), 表示全排列的规模。

第二行是N个不同的数字Pi(1 <= Pi <= N), 表示这N个数字的某一全排列。

输出 输出一个整数,表示不同连号区间的数目。

样例输入 2 4 3 2 4 1 5 3 4 2 5 1 样例输出 7 9 提示

题意分析

主要就是读题当时没理解题意:

给定了一串1 - n 的数列 在这串数列中包含了几个连续数列 其实和全排列没什么毛关系

方法

for i从1到n
····重置最大最小值
·····for j从i到n
··········计算其中的最大最小值
··········如果最大最小值的差等于第二层循环的数目(j - i)
···············计数加一
i遍历完成之后输出计数结果

伪码分析:

第一层i表示的是起始位置 第二层j表示的是终止位置

去起始和终止位置中的最大值和最小值

如果最大值和最小值之间的差值等于 i和j的差值 (也就使起始位置和终止位置之间的全部数目)

那么可以判断这个序列一定是连续的;

代码……

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;

int a[50005];

int main(){
    int minn, maxn, n, ans;
    int T;
    scanf("%d", &T);
    while (T--){
        scanf("%d", &n);
        for (int i = 1; i <= n; i++)
            scanf("%d", &a[i]);
        ans = 0;
        for (int i = 1; i <= n; i++){
            minn = n;
            maxn = 1;
            for (int j = i; j <= n; j++){
                maxn = max(maxn, a[j]);
                minn = min(minn, a[j]);
                if (maxn - minn == j - i)
                    ans++;
            }
        }
        printf("%d\n", ans);
    }
    return 0;
}
展开阅读全文

没有更多推荐了,返回首页